Naive Bayes
CS 780/880 Natural Language Processing Lecture 8

Samuel Carton, University of New Hampshire

Last lecture

Key idea: Probabilistic language modeling

Concepts
« Conditional probability
 Chainrule

N-gram models

Uses of language models
* Generation
* Evaluation

Perplexity

Unigram model

Basic idea: model the text as the individual words occurring independently
« Parametrized by corpus token frequencies

N
P(w(l) .. .W(N)) = HP(w(i))
i=1

What’s the problem with this?

Bigram model

Basic idea: model text as words being dependent on only the prior word
« Parameterized by token co-occurrence frequencies

N
PwD .)y = HP(W@ | w1
i=1

A bigram model is a type of Markov Chain

Markov Chain

Definition: a discrete stochastic process with the Markov property :
P(Xt|Xt—1,..,X)) = P(Xt|Xt — 1)

fully determined by a probability transition matrix P which defines the transition

probabilities:

(Pij =P(X, =JjlXt=1=1)
and an initial probability distribution specified by the vector x where:
x; = P(X,=1)

Should hopefully be clear why a bigram model is this

In general, we’re often concerned about the stationary distribution of X, over time
* NotsomuchinNLP

https://stephens999.github.io/fiveMinuteStats/markov_chains_discrete_intro.html

Stationary distribution

Corpus: Stationary distribution: from the CPT alone, what is the probability
that the word W, occurring at time t will be a particular word w?

“Iam a person.” ,
. o Ifyou think of words as states, can also be: what percentage of our
apersonami. total time will we spend in each state?
* Important for some tasks, not really so much for NLP
* Can be solved by doing eigendecomposition on the CPT
CPT:
i am a person : [END]
[START] | 0.5 0 0.5 0 0 0
i 0 0.5 0 0 0.5 0
am 0.5 0 0.5 0 0 0
a 0 0 0 1 0 0
person 0 0.5 0 0 0.5 0
0 0 0 0 0 1.0 6

Bayes Rule

Conditional probability

When two variables may be dependent, then their joint probability is expressed as follows:
P(X,Y) = P(Y)P(X|Y) = P(X)P(Y|X)
If they happen to be independent, then P(X|Y) = P(X)and P(Y|X) = P(Y),so

P(X,Y) = P(Y)P(X) = P(X)P(Y)

Bayes Rule

It follows from
P(X,Y) = P(Y)P(X|Y) = P(X)P(Y|X)
that
P(Y|X)P(X)
P(Y)

P(X|Y) =

Examples

P(Cough|Lung cancer)P(Lung cancer)
P(Cough)

P(Lung cancer|Cough) =

P(Event|Conspiracy)P(Conspiracy)
P(Event)

P(Conspiracy|Event) =

P(Barista likes you|Smiles when they give you cof fee)
_ P(Smiles when they give you cof fee|Barista likes you)P(Barista likes you)

P(Smiles when they give you cof f ee)

v

10

Relative probabilities

Often we only care about the relative probability of two possible outcomes, rather than
their true probability:

P(Lung cancer|Cough) vs. P(COVID|Cough)

p(Cough|Lung cancer)p(Lung cancer) _ P(Cough|COVID)p(coviID)
P(Cough) Vs P(Cough)

Because we only care about the relative value, we can ignore the denominator
P(Cough|Lung cancer) = P(Cough|COVID) = 1.0

~50 million COVID cases in 2022, ~300k new lung cancer cases in 2023

So P(COVID) =.15, and P(Lung cancer) = 0.001

So P(COVID|Cough) is 150 times higher than P(Lung cancer|Cough)
https://www.cancer.org/cancer/lung-cancer/about/key-statistics.html
https://covid.cdc.gov/covid-data-tracker/#trends totalcases select 00

https://www.cancer.org/cancer/lung-cancer/about/key-statistics.html
https://covid.cdc.gov/covid-data-tracker/#trends_totalcases_select_00

Base rate fallacy

A lot of fallacious thinking comes from ignoring the base rates P(X) and P(Y) in

P(Rare event | Hypothesis)P(Hypothesis)
P(Rare event)

P(Hypothesis | Rare event) =

P(Hypothesis) is often lower than you think
P(Rare event) is often higher than you think

https://en.wikipedia.org/wiki/Base rate fallacy
https://en.wikipedia.org/wiki/List of cognitive biases

P(Y|X)Px)

P(Y)

12

https://en.wikipedia.org/wiki/Base_rate_fallacy
https://en.wikipedia.org/wiki/List_of_cognitive_biases

Naive Bayes

Application to text

Classification:
P(Class | Words)

P(Class 0 | Words) vs. P(Class 1 | Words)

P(Words | Class 0)P(Class 0) Vs P(Words | Class 1)P(Class 1)

P(Words)) P(Words)

We can ignore P(Words), but how do we calculate:
« P(Words | Class 0)

« P(Class 0)

« P(Words | Class 1)

e P(Class1)

14

Application to text

Class 0
P(Class 0) =
#Class 0 + # Class 1

 And likewise for class 1

P(Words | Class 0)

* Build an n-gram model of all texts for which class is Class 0
* Use this model to estimate P(Words | Class 0)

* And likewise for Class 1

15

Naive Bayes

Basic idea: apply Bayes rule to find relative likelihoods of P(Class 0 | Words) vs.
P(Class 1 | Words), using unigram model for P(Words | Class C)

So if we consider words = {wy, wy, ..., wN}:

N
P(Class 0 | Words) « P(Class 0) 1_[P(wi|Class 0)
i=1

N
P(Class 1 | Words) « P(Class 1) 1_[P(wi |Class 1)

=1

16

Read the SST-2 dataset

1 display(dev_df)
sentence label
0 it 's @ charming and often affecting journey . 1
1 unflinchingly bleak and desperate 0
2 allows us to hope that nolan is poised to emba... 1
3 the acting , costumes , music , cinematography... 1
< it's slow -- very , very slow . 0
867 has all the depth of a wading pool . 0
868 a movie with a real anarchic flair . 1
869 a subject like this should inspire reaction in... 0
870 ... Is an arthritic attempt at directing by ca... 0
871 looking aristocratic , luminous yet careworn i... 1

872 rows x 2 columns

17

Preprocess and vectorize the data

1 from nltk import PorterStemmer

1 # for this dataset, the tokenization has already been done for us

2 stemmer = PorterStemmer()

3 def preprocess(s):

4 return ' '.join([stemmer.stem(token) for token in s.strip().split(' ')])

1 train_df['preprocessed’] = train_df['sentence'].apply(preprocess)
2 dev_df['preprocessed’'] = dev_df['sentence'].apply(preprocess)

1 from sklearn.feature_extraction.text import CountVectorizer

1 # Why are we using a CountVectorizer here instead of TF-IDF?
2

3 vectorizer = CountVectorizer()

4 train_X = vectorizer.fit_transform(train_df['preprocessed’'])
5 dev_X = vectorizer.transform(dev_df['preprocessed’])

18

Build and evaluate the model

1 from sklearn.naive_bayes import MultinomialNB

1 # See https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html#sklearn.naive bayes.MultinomialNB

2 # for hyperparameter options
3
4 model = MultinomialNB()

1 model.fit(train_X, train_df['label’'])

MultinomialNB()
1 dev_py = model.predict(dev_X)

1 from sklearn.metrics import accuracy_score, precision_score, recall_score, fl_score

1 def evaluate_predictions(y, py):

2| print(f'Accuracy: {accuracy_score(y, py):.3f}")

3| print(f'Precision: {precision_score(y, py):.3f}")
4| print(f'Recall: {recall_score(y, py):.3f}")

5| print(f'F1: {fi_score(y, py):.3f}")

19

Build and evaluate the model

Naive Bayes:

1 # Evaluating on the dev set
2 evaluate_predictions(dev_df['label’], dev_py)

Accuracy: ©.807
Precision: ©.794
Recall: ©.840
Fl: ©.816

1 # Evaluating on a sample of the training set
2 train_py = model.predict(train_X[©:1000])
3 evaluate_predictions(train_df['label’].iloc[@:1000],train_py)

Accuracy: ©.8°1
Precision: ©.89%94
Recall: ©.906
Fl: ©.900

K-nearest-neighbors:

1 evaluate_model(dev_X, dev_y, classifier)

Accuracy: 0.742
Precision: ©.707
Recall: ©.842
Fl: ©.769

1 evaluate_model(train_X[©:1000], train_y[©:1000], classifier)

Accuracy: 0.948
Precision: ©.945
Recall: ©.959
F1l: ©0.952

20

Overfitting and underfitting

F 9 x 3 X F X
X X Overfitting: model overly tuned to

;(x X : % X :x quirks of the training data—doesn’t

X X 3o x X X XX X X4 generalize

XX X\ XX X XX X

Under-fitting Appropirate-fitting Over-fitting Underfitted: model not tuned

(too simple to (forcefitting--too .. ,
explain the variance) good to be true) NG enough to tra|n|ng data_doesn T

capture data structure

Related (but not identical) to bias-
variance trade-off

* High bias = underfitting

Price
Price

"

X
/ Price

Size Size Size
¥ + + x2 + + 2 + - 4
B+ 01 By ¥ 0y G B Bx + 022 = B0 07 |0 High variance > overfitting
High bais (underfit) High bais (underfit) High variance
(overfit) 856

https://www.geeksforgeeks.org/underfitting-and-overfitting-in-machine-learning/ 2

Explaining the model

1 # We can get the (log) probability of each word for each class

2 print('Word log-probs:")

3 display(model.feature_log_prob_)

4

S # It will have one row for each class and one column for each word in the vocabulary
6 print('Log-probs matrix shape:')

7 display(model.feature_log_prob_.shape)

8

Word log-probs:

array([[-11.12495518, -8.09240893, -10.20866444, ..., -12.51124954,
-10.71949007, -10.90181162],
[-11.03503481, -9.50897851, -10.15956608, ..., -11.25817837,
-12.64447273, -11.95132555]])

Log-probs matrix shape:

(2, 10106)

22

Explaining the model

1 # We can identify the words that were the biggest distinguishers by calculating
2 # the diff between the two rows

3 word_prob_diffs = model.feature_log _prob_[@] - model.feature_log prob_[1]

4 word_prob_diffs

array([-0.08992036, 1.41656958, -0.04909837, ..., -1.25307117,
1.92498266, 1.04951392])

| 1 # And then we can use numpy.argsort() and numpy.abs() to find the indices of the
2 # words with the biggest diff (positive or negative)
3 import numpy as np
4 sorted_diff_indices = np.argsort(np.abs(word_prob_diffs))
5 sorted_diff_indices

array([6103, 9942, 7833, ..., 6692, 6721, 9402])

| 1 # Numpy argsort always goes in ascending order, so to get the top K indices
2 # we have to grab the last K indices
3
4 # We can use -1 as the third part of our slice, to get these back in reverse order
5 k= 10
6 top_k_indices = sorted_diff_indices[:-k:-1]

23

Explaining the model

1 # Then we can find the words and values associated with those indices
2 vocab = vectorizer.get_feature_names_out()

3 top_words = vocab[top_k_indices]

4 top_diffs = word_prob_diffs[top_k_indices]

5

6 print(f'Top {k} distinguishing words in our Naive Bayes classifier’)
7 for word, diff in zip(top_words,top_diffs):

8| print(f'\tWord:"{word}" - Diff: {diff:.3f}")

Top 10 distinguishing words in our Naive Bayes classifier
Word:"unfunni” - Diff: 4.861
Word:"poorli"™ - Diff: 4.698
Word:"pointless" - Diff: 4.677
Word:"tiresom™ - Diff: 4.588
Word:"eleg" - Diff: -4.410
Word: "unnecessari” - Diff: 4.410
Word:"badli" - Diff: 4.382
Word:"embrac" - Diff: -4.355
Word:"inept"” - Diff: 4.338

24

Interpreting log-probability differences

log(P(w,| class 0)) — log(P(w;| class 1)) = 4.8
Then:

P(wi|class 0)
P(wi|class 1) -

et =2.718%8 = 121.51

Meaning that w, (“unfunny” in this case) is 121.51 times more likely to occur in class 0 than
inclass 1

v

25

Explaining individual predictions

1 sentence = 'the movie was pretty awful : not good at all .
2 preprocessed_sentence = preprocess(sentence)

3 sentence_x = vectorizer.transform([preprocessed_sentence])
4 py = model.predict(sentence_x)

S print(f'Model prediction for "{preprocessed_sentence}": {py}')

Model prediction for "the movi wa pretti aw : not good at all .": [@]

1 # we can find the vocab indices for the tokens in the sentence

2 sentence_tokens = preprocessed_sentence.split(’ ')

3 token_indices = [vectorizer.vocabulary_[token] for token in sentence_tokens \

4 if token in vectorizer.vocabulary_] #there's one or two stopwords to ignore
5 token_indices

[8892, 5827, 9702, 6828, 680, 6067, 3791, 615, 339]

26

Explaining individual sentences

s this overfitting?

1 # Then we can do the same thing as we did with the top indices above
2 sentence_words = vocab[token_indices]

3 sentence_diffs = word_prob_diffs[token_indices]

4 print(f'Class probability differences for tokens in the sentence:")
5 for word, diff in zip(sentence_words,sentence_diffs):

6| print(f'\tWord:"{word}" - Diff: {diff:.3f}")

Class probability differences for tokens in the sentence:

Word:"the" - Diff: -0.032

Word:"movi" - Diff: ©.196

Word:"wa" - Diff: ©.836

Word:"pretti" - Diff: -0.643

Word:"aw" - Diff: 1.574

Word:"not" - Diff: ©.679

Word:"good"” - Diff: -1.021

Word:"at" - Diff: ©.080

Word:"all" - Diff: ©.111

27

Concluding thoughts

Naive bayes: application of Bayes Rule + unigram language modeling to classification
Huge deal in 1998

Limitations?

28

	Slide 1: Naïve Bayes
	Slide 2: Last lecture
	Slide 3: Unigram model
	Slide 4: Bigram model
	Slide 5: Markov Chain
	Slide 6: Stationary distribution
	Slide 7: Bayes Rule
	Slide 8: Conditional probability
	Slide 9: Bayes Rule
	Slide 10: Examples
	Slide 11: Relative probabilities
	Slide 12: Base rate fallacy
	Slide 13: Naïve Bayes
	Slide 14: Application to text
	Slide 15: Application to text
	Slide 16: Naïve Bayes
	Slide 17: Read the SST-2 dataset
	Slide 18: Preprocess and vectorize the data
	Slide 19: Build and evaluate the model
	Slide 20: Build and evaluate the model
	Slide 21: Overfitting and underfitting
	Slide 22: Explaining the model
	Slide 23: Explaining the model
	Slide 24: Explaining the model
	Slide 25: Interpreting log-probability differences
	Slide 26: Explaining individual predictions
	Slide 27: Explaining individual sentences
	Slide 28: Concluding thoughts

