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Last lecture

Key idea: Probabilistic language modeling

Concepts

• Conditional probability

• Chain rule

• N-gram models

• Uses of language models

• Generation

• Evaluation

• Perplexity
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Unigram model

Basic idea: model the text as the individual words occurring independently

• Parametrized by corpus token frequencies

What’s the problem with this?
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Bigram model

Basic idea: model text as words being dependent on only the prior word

• Parameterized by token co-occurrence frequencies

A bigram model is a type of Markov Chain
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Markov Chain

Definition: a discrete stochastic process with the Markov property : 
𝑃(𝑋𝑡|𝑋𝑡 − 1,… , 𝑋1) = 𝑃(𝑋𝑡|𝑋𝑡 − 1)

fully determined by a probability transition matrix P which defines the transition 
probabilities:

(𝑃𝑖𝑗 = 𝑃(𝑋𝑡 = 𝑗|𝑋𝑡 − 1 = 𝑖)

and an initial probability distribution specified by the vector x where:
𝑥𝑖 = 𝑃(𝑋0 = 𝑖)

Should hopefully be clear why a bigram model is this

In general, we’re often concerned about the stationary distribution of Xt over time

• Not so much in NLP
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Stationary distribution

Corpus:

“i am a person .”

“a person am i .”

CPT:
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i am a person . [END]

[START] 0.5 0 0.5 0 0 0

i 0 0.5 0 0 0.5 0

am 0.5 0 0.5 0 0 0

a 0 0 0 1 0 0

person 0 0.5 0 0 0.5 0

. 0 0 0 0 0 1.0

Stationary distribution: from the CPT alone, what is the probability 
that the word Wt occurring at time t will be a particular word w?
• If you think of words as states, can also be: what percentage of our 

total time will we spend in each state?
• Important for some tasks, not really so much for NLP
• Can be solved by doing eigendecomposition on the CPT



Bayes Rule



Conditional probability

When two variables may be dependent, then their joint probability is expressed as follows:

𝑃(𝑋, 𝑌) = 𝑃(𝑌)𝑃(𝑋|𝑌) = 𝑃(𝑋)𝑃(𝑌|𝑋)

If they happen to be independent, then 𝑃(𝑋|𝑌) = 𝑃(𝑋) and 𝑃(𝑌|𝑋) = 𝑃(𝑌), so

𝑃(𝑋, 𝑌) = 𝑃(𝑌)𝑃(𝑋) = 𝑃(𝑋)𝑃(𝑌)
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Bayes Rule

It follows from
𝑃(𝑋, 𝑌) = 𝑃(𝑌)𝑃(𝑋|𝑌) = 𝑃(𝑋)𝑃(𝑌|𝑋)

that

𝑃 𝑋 𝑌 =
𝑃 𝑌 𝑋 𝑃(𝑋)

𝑃(𝑌)
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Examples

𝑃 𝐿𝑢𝑛𝑔 𝑐𝑎𝑛𝑐𝑒𝑟 𝐶𝑜𝑢𝑔ℎ =
𝑃 𝐶𝑜𝑢𝑔ℎ 𝐿𝑢𝑛𝑔 𝑐𝑎𝑛𝑐𝑒𝑟 𝑃(𝐿𝑢𝑛𝑔 𝑐𝑎𝑛𝑐𝑒𝑟)

𝑃(𝐶𝑜𝑢𝑔ℎ)

𝑃 𝐶𝑜𝑛𝑠𝑝𝑖𝑟𝑎𝑐𝑦 𝐸𝑣𝑒𝑛𝑡 =
𝑃 𝐸𝑣𝑒𝑛𝑡 𝐶𝑜𝑛𝑠𝑝𝑖𝑟𝑎𝑐𝑦 𝑃(𝐶𝑜𝑛𝑠𝑝𝑖𝑟𝑎𝑐𝑦)

𝑃(𝐸𝑣𝑒𝑛𝑡)

𝑃 𝐵𝑎𝑟𝑖𝑠𝑡𝑎 𝑙𝑖𝑘𝑒𝑠 𝑦𝑜𝑢 𝑆𝑚𝑖𝑙𝑒𝑠 𝑤ℎ𝑒𝑛 𝑡ℎ𝑒𝑦 𝑔𝑖𝑣𝑒 𝑦𝑜𝑢 𝑐𝑜𝑓𝑓𝑒𝑒

=
𝑃 𝑆𝑚𝑖𝑙𝑒𝑠 𝑤ℎ𝑒𝑛 𝑡ℎ𝑒𝑦 𝑔𝑖𝑣𝑒 𝑦𝑜𝑢 𝑐𝑜𝑓𝑓𝑒𝑒 𝐵𝑎𝑟𝑖𝑠𝑡𝑎 𝑙𝑖𝑘𝑒𝑠 𝑦𝑜𝑢 𝑃(𝐵𝑎𝑟𝑖𝑠𝑡𝑎 𝑙𝑖𝑘𝑒𝑠 𝑦𝑜𝑢)

𝑃(𝑆𝑚𝑖𝑙𝑒𝑠 𝑤ℎ𝑒𝑛 𝑡ℎ𝑒𝑦 𝑔𝑖𝑣𝑒 𝑦𝑜𝑢 𝑐𝑜𝑓𝑓𝑒𝑒)
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Relative probabilities

Often we only care about the relative probability of two possible outcomes, rather than 
their true probability:

𝑃 𝐿𝑢𝑛𝑔 𝑐𝑎𝑛𝑐𝑒𝑟 𝐶𝑜𝑢𝑔ℎ vs. 𝑃 𝐶𝑂𝑉𝐼𝐷 𝐶𝑜𝑢𝑔ℎ

𝑃 𝐶𝑜𝑢𝑔ℎ 𝐿𝑢𝑛𝑔 𝑐𝑎𝑛𝑐𝑒𝑟 𝑃(𝐿𝑢𝑛𝑔 𝑐𝑎𝑛𝑐𝑒𝑟)

𝑃(𝐶𝑜𝑢𝑔ℎ)
vs. 

𝑃 𝐶𝑜𝑢𝑔ℎ 𝐶𝑂𝑉𝐼𝐷 𝑃(𝐶𝑂𝑉𝐼𝐷)

𝑃(𝐶𝑜𝑢𝑔ℎ)

Because we only care about the relative value, we can ignore the denominator

𝑃 𝐶𝑜𝑢𝑔ℎ 𝐿𝑢𝑛𝑔 𝑐𝑎𝑛𝑐𝑒𝑟 ≈ 𝑃 𝐶𝑜𝑢𝑔ℎ 𝐶𝑂𝑉𝐼𝐷 ≈ 1.0

~50 million COVID cases in 2022, ~300k new lung cancer cases in 2023

So P(COVID) = .15, and P(Lung cancer) = 0.001

So 𝑃 𝐶𝑂𝑉𝐼𝐷 𝐶𝑜𝑢𝑔ℎ is 150 times higher than 𝑃 𝐿𝑢𝑛𝑔 𝑐𝑎𝑛𝑐𝑒𝑟 𝐶𝑜𝑢𝑔ℎ

https://www.cancer.org/cancer/lung-cancer/about/key-statistics.html

https://covid.cdc.gov/covid-data-tracker/#trends_totalcases_select_00 11

https://www.cancer.org/cancer/lung-cancer/about/key-statistics.html
https://covid.cdc.gov/covid-data-tracker/#trends_totalcases_select_00


Base rate fallacy

A lot of fallacious thinking comes from ignoring the base rates P(X) and P(Y) in 
𝑃 𝑌 𝑋 𝑃(𝑋)

𝑃(𝑌)

𝑃(𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 | 𝑅𝑎𝑟𝑒 𝑒𝑣𝑒𝑛𝑡) = 
𝑃 𝑅𝑎𝑟𝑒 𝑒𝑣𝑒𝑛𝑡 𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 𝑃(𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠)

𝑃(𝑅𝑎𝑟𝑒 𝑒𝑣𝑒𝑛𝑡)

P(Hypothesis) is often lower than you think

P(Rare event) is often higher than you think

https://en.wikipedia.org/wiki/Base_rate_fallacy

https://en.wikipedia.org/wiki/List_of_cognitive_biases
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Application to text

Classification: 
𝑃(𝐶𝑙𝑎𝑠𝑠 | 𝑊𝑜𝑟𝑑𝑠)

𝑃(𝐶𝑙𝑎𝑠𝑠 0 | 𝑊𝑜𝑟𝑑𝑠) vs. 𝑃(𝐶𝑙𝑎𝑠𝑠 1 | 𝑊𝑜𝑟𝑑𝑠)

𝑃 𝑊𝑜𝑟𝑑𝑠 𝐶𝑙𝑎𝑠𝑠 0)𝑃(𝐶𝑙𝑎𝑠𝑠 0)

𝑃(𝑊𝑜𝑟𝑑𝑠)
vs.

𝑃 𝑊𝑜𝑟𝑑𝑠 𝐶𝑙𝑎𝑠𝑠 1)𝑃(𝐶𝑙𝑎𝑠𝑠 1)

𝑃(𝑊𝑜𝑟𝑑𝑠)

We can ignore P(Words), but how do we calculate:

• 𝑃 𝑊𝑜𝑟𝑑𝑠 𝐶𝑙𝑎𝑠𝑠 0)

• 𝑃(𝐶𝑙𝑎𝑠𝑠 0)

• 𝑃 𝑊𝑜𝑟𝑑𝑠 𝐶𝑙𝑎𝑠𝑠 1)

• 𝑃(𝐶𝑙𝑎𝑠𝑠 1)
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Application to text

𝑃 𝐶𝑙𝑎𝑠𝑠 0 =
# 𝐶𝑙𝑎𝑠𝑠 0

# 𝐶𝑙𝑎𝑠𝑠 0 + # 𝐶𝑙𝑎𝑠𝑠 1

• And likewise for class 1

𝑃 𝑊𝑜𝑟𝑑𝑠 𝐶𝑙𝑎𝑠𝑠 0)

• Build an n-gram model of all texts for which class is Class 0

• Use this model to estimate 𝑃 𝑊𝑜𝑟𝑑𝑠 𝐶𝑙𝑎𝑠𝑠 0)

• And likewise for Class 1
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Naïve Bayes

Basic idea: apply Bayes rule to find relative likelihoods of 𝑃(𝐶𝑙𝑎𝑠𝑠 0 | 𝑊𝑜𝑟𝑑𝑠) vs. 
𝑃(𝐶𝑙𝑎𝑠𝑠 1 | 𝑊𝑜𝑟𝑑𝑠), using unigram model for 𝑃 𝑊𝑜𝑟𝑑𝑠 𝐶𝑙𝑎𝑠𝑠 𝐶)

So if we consider words = {𝑤0, 𝑤1, … , 𝑤𝑁}:

𝑃(𝐶𝑙𝑎𝑠𝑠 0 | 𝑊𝑜𝑟𝑑𝑠) ∝ 𝑃(𝐶𝑙𝑎𝑠𝑠 0)ෑ

𝑖=1

𝑁

𝑃(𝑤𝑖 |𝐶𝑙𝑎𝑠𝑠 0)

𝑃(𝐶𝑙𝑎𝑠𝑠 1 | 𝑊𝑜𝑟𝑑𝑠) ∝ 𝑃(𝐶𝑙𝑎𝑠𝑠 1)ෑ

𝑖=1

𝑁

𝑃(𝑤𝑖 |𝐶𝑙𝑎𝑠𝑠 1)
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Read the SST-2 dataset
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Preprocess and vectorize the data
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Build and evaluate the model
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Build and evaluate the model

Naïve Bayes:
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K-nearest-neighbors:



Overfitting and underfitting

Overfitting: model overly tuned to 
quirks of the training data—doesn’t 
generalize

Underfitted: model not tuned 
enough to training data—doesn’t 
capture data structure

Related (but not identical) to bias-
variance trade-off

• High bias → underfitting

• High variance → overfitting

21https://www.geeksforgeeks.org/underfitting-and-overfitting-in-machine-learning/



Explaining the model
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Explaining the model
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Explaining the model
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Interpreting log-probability differences

If :
log(𝑃(𝑤𝑖| 𝑐𝑙𝑎𝑠𝑠 0)) − log(𝑃(𝑤𝑖| 𝑐𝑙𝑎𝑠𝑠 1)) = 4.8

Then:

𝑃(𝑤𝑖|𝑐𝑙𝑎𝑠𝑠 0)

𝑃(𝑤𝑖|𝑐𝑙𝑎𝑠𝑠 1)
= 𝑒4.8 = 2.7184.8 = 121.51

Meaning that wi (“unfunny” in this case) is 121.51 times more likely to occur in class 0 than 
in class 1
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Explaining individual predictions
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Explaining individual sentences

Is this overfitting?
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Concluding thoughts

Naïve bayes: application of Bayes Rule + unigram language modeling to classification

Huge deal in 1998

Limitations?
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