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Last lecture

Key idea: Dimension reduction

Concepts

• Dimensionality of data

• Variance of data

• Principle components

• Matrix factorization

• SVD and PCA

• Application to clustering
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Toolkits

• Scikit-learn for SVD



Probability 
review



Random variables

A random variable X can take different values depending on chance

Notation:

• p(X = x) is the probability that r.v. X takes value x 

• p(x) is shorthand for the same 

• p(X) is the distribution over values X can take (a function)

Example: flipping a coin; P(X = heads) = P(X=tails) = 0.5
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Discrete distributions

A discrete distribution enumerates the values a random variable can take and how likely 
each one is

Examples:

p(flipping a coin) = [0.5, 0.5]

p(rolling a die) = [.167, .167, .167, .167, .167, .167]

p(flipping a rigged coin) = [0.25, 0.75]

p(rolling a die) = [0.1, 0 .1, 0.1,0 .1, 0.1, 0.5]

How does entropy relate to the values in the discrete distribution?
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Joint probability and product rule

The joint probability of two random variables X and Y describes the total chance they 
take on a particular pair of values: p(X = x, Y = y)

If X and Y are independent, then p(X = x, Y = y) = p(X = x)* p(Y = y) 

Example: two coin flips X and Y. p(X = heads, Y = heads) = 0.5 * 0.5 = 0.25
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Conditional probability

If X and Y are dependent, then you have to think of the probability of X given Y: 
p(X = x | Y = y)

In this case, the joint probability of X and Y is p(Y=y) * p(X = x | Y = y)

Example: Weather is 50% sunny and 50% cloudy; I am 25% likely to run when sunny and 
10% likely when rainy.

P(run|sunny) = .25

P(run, sunny) = 0.5 * 0.25 = 0.125

P(run) = P(run, sunny) + P(run, cloudy) = 0.5 * 0.25 + 0.5 * 0.1 = 0.175

How does mutual information relate to dependence versus independence?
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Chain rule

If we generalize to N joint random variables, we end up with the chain rule
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Conditional probability table

With two variables X and Y, we can summarize their joint distribution with a conditional 
probability table

Each cell is P(X=column | y = row)

Example:
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Run Don’t 

run

Sunny 0.25 0.75

Cloudy 0.1 0.9
Y

X



Maximum-likelihood probabilistic modeling

Whenever we build a probabilistic model of some phenomenon, we are deciding to fit it 
within some probabilistic form, and then finding the most likely parameters of our model 
to fit the data.

Example: 

• Model: the weather is sunny with probability p, and cloudy with probability 1-p

• Data: 10 days; [sunny, cloudy, sunny, sunny, cloudy, sunny, sunny, cloudy, sunny, 
sunny]

• MLE estimate of p:
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Maximum-likelihood probabilistic modeling

Whenever we build a probabilistic model of some phenomenon, we are deciding to fit it 
within some probabilistic form, and then finding the most likely parameters of our model 
to fit the data.

Example: 

• Model: the weather is sunny with probability p, and cloudy with probability 1-p

• Data: 10 days; [sunny, cloudy, sunny, sunny, cloudy, sunny, sunny, cloudy, sunny, 
sunny]

• MLE estimate of p: 0.7

How did we do that?
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MLE with conditional probability

Model: 

• the weather is sunny with probability p and cloudy with probability 1-p

• I run with probability rs when it is sunny and probability rc when it is cloudy

Data: 10 runs

Counts:
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sunny cloudy cloudy sunny cloudy sunny cloudy sunny sunny cloudy

run no run no run no run no run no run no run run no run run

Run Don’t 

run

Sunny 2 4

Cloudy 1 3

p = 

rs =

rc = 



MLE with conditional probability

Model: 

• the weather is sunny with probability p and cloudy with probability 1-p

• I run with probability rs when it is sunny and probability rc when it is cloudy

Data: 10 runs

Counts:
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sunny cloudy cloudy sunny cloudy sunny cloudy sunny sunny cloudy

run no run no run no run no run no run no run run no run run

Run Don’t 

run

Sunny 2 4

Cloudy 1 3

p = 2+4 / (2+4+1+3) = 6/10 = .6 

rs = 2 / (2+4) = 2/6 = 0.33

rc = 1 / (1+3) = 1/4 = 0.25



Probabilistic 
language 
modeling



Unigram model

Basic idea: probability of a given word w depends only on its overall frequency within the 
corpus

• So the probability of a given text is the product of the individual word probabilities

Similar to bag-of-words in that it doesn’t respect word order, but bag-of-words isn’t 
explicitly probabilistic
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Bigram model

Basic idea: the probability of word i depends only on word i-1

Example: “I am” is more likely than “I is”
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What can we do with a language model?

Two main things:

1. Generate new text

2. Assess the likelihood of existing text
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The corpus
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Preprocessing
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Preprocessing
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Counting
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Counting
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Counts to probabilities
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Generating text

Once we have a MLE estimate model, we can generate text by just sampling from our 
model one word at a time

We can randomly sample, or take the most probable word at each step

We can stop after N tokens, or when we hit some stopping condition (like a [STOP] token, 
or a “.”)
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Generating text
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Generating text
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Assessing text probability

Given our model, we can calculate the likelihood that a given text was produced by the 
model.

Example: Bigram model  

p(“this is a sentence .”) = p(this|[START])p(is|this)p(a|is)p(sentence|a)p(.|sentence)
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One token at a time
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Over a whole sequence
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Over a whole sequence

Calculating cumulative log-likelihood is generally preferred to raw likelihood

• Why?
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Perplexity

One way to assess the quality of a probabilistic language model is to calculate the average 
likelihood of the training data under that model. 

This measure, called "perplexity", captures the intuition that a good language model of a 
corpus is one that would have been very likely to generate that corpus 

Can only really be compared to itself for a given corpus
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Smoothing

Any model bigger than a unigram model suffers from sparsity issues that make certain 
sequences impossible, and screws with all the math

Example: “was delightful” is an impossible bigram in our toy corpus because those two 
words never happen to occur together, even though they very much could.

Solution: add some smoothing to the model which makes any bigram possible (if not 
likely)
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Smoothing
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Smoothing
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Smoothing
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N-gram models

Unigram model:

Bigram model:

Trigram model: 

…and so on. But what’s the problem? What stops us from conditioning on every previous 
token?
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N-gram models

Unigram model:

Bigram model:

Trigram model: 

…and so on. But what’s the problem? What stops us from conditioning on every previous 
token?

• data sparsity

• # of parameters
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Concluding thoughts

Probabilistic modeling of text: count word occurrences and normalize to conditional 
probability distributions

Differing context sizes

• Unigrams: words occur independently

• Bigrams: words depend only on previous word

• Trigrams: words depend on previous two words

• etc.

Two important tasks

• Generate new text

• Assess text likelihood under model
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Discussion question: how to do classification 

with these abilities?
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