
Dimension Reduction
CS 780/880 Natural Language Processing Lecture 6

Samuel Carton, University of New Hampshire



Last lecture

Key idea: Clustering text

Concepts

• Unsupervised learning

• Clustering

• K-means clustering

• Clustering metrics

• Extrinsic

• Mutual information

• Intrinsic

• Silhouette score

• Representing induvial clusters

2

Toolkits

• Matplotlib for data visualization

• Scikit-Learn for model building and evaluation



Dimensionality of data

Basic idea: when every item in the dataset consists of N elements, we can think of it as N-
dimensional and as therefore points in N-dimensional space
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2-dimensional data 3-dimensional data

What is the 

dimensionality of 

our vectorized text 

data?



Dimension reduction

Question: Our text is N-dimensional… but do actually need N dimensions to represent it?
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2-dimensional data
3-dimensional data



Dimension reduction

Answer: Nope. If we could figure out the line (or plane) along which the data is laid out, 
we would only need 1 (or 2) values to describe every data point—how far it is along that 
direction(s)

• I.e. direction of maximum variance
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Dimension reduction

But what if the data isn’t perfectly laid out across a lower-dimension set of axes?

• Then maybe we can still capture most of the variance in the data, such that what is left 
isn’t really that important
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Dimension reduction

Basic idea: take a data matrix of size M×N and compress it to M×D, where D << M, while 
still retaining most of the useful information in the matrix

• For text, go from M sparse vectors of dimensionality V=size of the vocabulary, to M 
dense vectors of size D, where D is significantly smaller (100, 200, etc.)

• While still being useful for classification, clustering, etc. 

Two most popular approaches:

• Principal component analysis (PCA)

• Singular value decomposition (SVD)
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Matrix multiplication

When you multiply two matrixes Am×n * Bn×p, you get Cm×p by calculating the dot product of 
every row of A with every column of B

Only matrixes with matching inner dimensions (e.g. m×n versus n×p) can be multiplied
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Matrix transpose

Transposing a matrix, denoted by MT, switches its dimensions.

Very common operation in linear algebra

Also the only way you can multiply a matrix by itself 
unless it is square
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Examples:



Covariance matrix

The covariance matrix quantifies the joint variability between two random variables X and Y

When X is a data matrix of n samples × m features, centered on 0, then the covariance 
matrix can be calculated as:
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PCA and SVD

Principle component analysis (PCA) and singular value decomposition (SVD) are both 
matrix factorization techniques, which calculate how to express the covariance matrix as 
a product of lower-dimensionality matrices. 

PCA performs an eigendecomposition of the covariance matrix C, which learns to 
represent it as                            , where W is a m×m matrix of eigenvectors, and Λ a diagonal 
m×m matrix of eigenvalues

SVD performs a decomposition of C into a product of two unitary matrices (U, V*) and a 
rectangular diagonal matrix of singular values (Σ): 𝐶 = 𝑈𝛴𝑉∗

In both cases, we can get back a lower-dimension approximation of our original X by 
performing the product with subsets of the factor matrices:

Example for PCA: 
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𝐶 = 𝑊𝛬𝑊−1



PCA vs. SVD in practice

In practice, PCA is calculated “under the hood” using SVD (truncated SVD for text)

• SVD singular values are easily convertible to PCA eigenvalues

So mostly you will be using SVD for dimension reduction in practice

And you can look at the singular values to get a sense of how much of the variance of the 
original data are explained in the D dimensions you’ve chosen to retain. 
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Conventional clustering
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Conventional clustering
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Conventional clustering
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SVD for clustering
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SVD for clustering
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SVD for clustering
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SVD for clustering
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SVD for visualizing clusters
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SVD for visualizing clusters
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SVD for visualizing clusters
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SVD for visualizing clusters
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Concluding thoughts

In NLP, learning dense representations of text is absolutely critical.

You can only get so far with sparse bag-of-words or TF-IDF representations. 

Deep learning, aka representation learning

• Learns “targeted” dense representations optimized for specific tasks

Dimension reduction: “general-purpose” representations optimized for mathematical properties

• SVD on term-document matrix is called Latent Semantic Analysis (1988)

Still useful for prediction, clustering, visualization, etc.

Much of this lecture borrowed from: https://towardsdatascience.com/pca-and-svd-explained-with-

numpy-5d13b0d2a4d8 24

https://towardsdatascience.com/pca-and-svd-explained-with-numpy-5d13b0d2a4d8
https://towardsdatascience.com/pca-and-svd-explained-with-numpy-5d13b0d2a4d8
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