
Supervised Learning with Nearest
Neighbors
CS 780/880 Natural Language Processing Lecture 4

Samuel Carton, University of New Hampshire

Last lecture

Key idea: Vectorizing text

Concepts

• Preprocessing

• Stemming

• Tokenization

• Vectorizing

• Bag-of-words

• TF-IDF

• Text similarity

• Jaccard distance

• Cosine distance/similarity

• Others

2

Toolkits

• Numpy for vectors

• NLTK for preprocessing

• Scikit-Learn for vectorizing & similarity

Supervised learning for classification

Classification: given input text 𝑥, classify 𝑥 by predicting label 𝑦

• “You are an ass!” → toxic

• “The movie was great.” → positive

• “SALE! SALE! SALE!” → spam

Supervised learning: given a training set 𝑋𝑡𝑟𝑎𝑖𝑛 with labels 𝑌𝑡𝑟𝑎𝑖𝑛, learn how to predict 𝑦
for an unseen input 𝑥

All we know how to do right now is text similarity. How to do supervised classification with
just this tool?

3

• “You are a mensch!” → nontoxic

• “The movie was awful.” → negative

• “I’m breaking up with you.”→ not spam

K-nearest neighbors

Basic idea: when trying to classify 𝑥, find the K nearest
neighbors of 𝑥 within 𝑋𝑡𝑟𝑎𝑖𝑛and let ො𝑦 be the majority-vote
true label 𝑦𝑡𝑟𝑎𝑖𝑛 among those K neighbors

Why does it have to be K? Why not always K = 1?

How would you implement this given what you already
know?

4

https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

Case study: SST-2

• Stanford Sentiment Treebank (2-class
version)

• Short movie reviews, tagged as
positive or negative in sentiment

• Created by Socher et al. (2013)

• https://nlp.stanford.edu/sentiment/tr
eebank.html

• Included as part of GLUE benchmark

• https://gluebenchmark.com/tasks

• Size:

• 67,349 training examples

• 872 dev examples

• 1821 test examples

5

the rock is destined to be the 21st century 's new `` conan ''

and that he 's going to make a splash even greater than arnold

schwarzenegger , jean-claud van damme or steven segal .

positive (1)

https://nlp.stanford.edu/sentiment/treebank.html
https://nlp.stanford.edu/sentiment/treebank.html
https://gluebenchmark.com/tasks

Pandas: read and manipulate data

Pandas is a useful Python library for reading and manipulating datasets of various kinds
(text included)

https://pandas.pydata.org/

Largely consists of an implementation of “DataFrame” from the R statistical analysis
language

• Swiss army knife data structure

Likely to be covered more thoroughly in a “data science” course.

6

https://pandas.pydata.org/

Pandas basics

7

Pandas basics

8

Pandas basics

9

Pandas basics

10

.apply() method

11

DataFrame filtering

12

DataFrame filtering

13

Reading the dataset

14

Preprocessing the dataset

15

Preprocessing the dataset

16

Vectorizing the text

Note that we are using .fit_transform()
on the training data, but only
.transform() on the development set.

Why?

17

Training the model

Very simple. Just pick a number of neighbors to consider, and a distance metric, and we’re
off to the races.

18

Evaluating classifiers

Given a set of predictions 𝑌 and the true labels 𝑌, there are a few different ways to
evaluate how well we did.

One way to divide up predictions is into errors (ො𝑦 ≠ 𝑦) and non-errors (ො𝑦 = 𝑦)

In a binary classification setting (like SST-2), we can also think about different kinds of
errors and non-errors:

• True positives (TPs): ො𝑦 = 1; 𝑦 = 1

• True negatives (TNs): ො𝑦 = 0; 𝑦 = 0

• False positives (FPs): ො𝑦 = 1; 𝑦 = 0

• False negatives (FNs): ො𝑦 = 0; 𝑦 = 1

Things get more complicated with 3+ classes, but don’t worry about it for now
19

https://en.wikipedia.org/wiki/Evaluation_of_binary_classifiers

Accuracy

What percentage of my guesses were correct?

Problematic when the true labels are highly unbalanced (e.g. 90% positive, 10% negative)

• 91% accuracy looks good by itself, but not so great if you could get 90% by just
guessing the most common class.

20

=
𝐶𝑂𝑅

𝐶𝑂𝑅 + 𝐸𝑅𝑅

Recall

Of all the positives examples, what percentage of them did I correctly guess were positive?

AKA sensitivity, true positive rate (TPR)

Particularly important when we really don’t want to miss any positives

• I.e. we want to avoid false negatives

• What are tasks for which this is this the case?

21

Precision

When I guessed positive, how likely was I to be correct?

AKA positive predictive value (PPV)

Particularly important when we really don’t want to falsely predict any example as
positive

• What are tasks where this is the case?

22

F1 score

Defined as the harmonic mean of precision and recall

Balances precision and recall.

Does a better job of handling unbalanced data

• Although you still probably want to calculate F1 for both possible definitions of
“positive”, then take the mean of that value

23

Evaluating the predictions

24

Understanding individual predictions

This is wrong! But why?

25

Explaining individual predictions

26

Finding what we think should be the
nearest neighbor(s)

27

Finding what we think should be the
nearest neighbor(s)

Found a pretty good one…

28

Understanding why it isn’t

29

Understanding “was” vs. “delight”

30

Understanding “was” vs. “delight”

31

Examining the two distances

32

The problem

3 main things going on here:

1. It turns out that “was” is less common in the corpus (only 608 instances) than we
might expect compared to delight (325 instances)

2. “was” occurs twice in "the film was a delight -- i was riveted .”, so it gets a higher tf-idf
weight for that vector

3. Because cosine distance is normalized by vector magnitude, the tf-idf values in
shorter texts get a higher value than the same ones in longer texts

We can’t do anything about 1 without changing the corpus, or about 3 without using a
different distance metric

But what about 2?

33

Training a new model

34

Training a new model

35

Training a new model

36

Why did I go through that with you?

1. I had to deal with it when I was writing the code, so now you get to deal with it too.

2. These kinds of issues come up all the time. Model debugging is part of the life of an NLP
or data science practitioner.

37

Model confidence

Sometimes you want not just a prediction, but a confidence estimate of how certain the
classifier is in its prediction.

What are some cases where you might want this?

How to calculate confidence varies from model to model, and doing it robustly is a whole
research topic in and of itself.

For K-nearest-neighbors, you can just look at the votes of the K neighbors.

38

Model confidence

39

Hyperparameters

All these different choices are called “hyperparameters”

• How many neighbors to use

• What distance metric to use

• Whether to set binary=True or False in the vectorizer

A big part of model building is finding the best (or adequately okay) set of
hyperparameters

Simplest and most common approach is to just search exhaustively over space of possible
values—called grid search

40

Hyperparameters

41

Hyperparameters

42

Other things to know

How to use each set:

• Train on the training set

• Experiment on the dev set

• Leave the test set alone until the very end (notice we didn’t even use it)

When dealing with temporal data (which SST-2 is not, really)

• Never, ever, train on future data and test on past data

• Super common mistake in the wild

43

Concluding thoughts

New toolkit: Pandas

Pretty cool that we can already build models with what little we’ve learned so far. Non-
parametric models so far, but we’re getting there.

When doing nearest-neighbor classification (and classification generally for 1 and 2):

1. How you choose to vectorize your text matters a lot

2. The distance metric you use matters a lot

3. Sometimes more sensible individual predictions don't translate to better
performance

44

	Slide 1: Supervised Learning with Nearest Neighbors
	Slide 2: Last lecture
	Slide 3: Supervised learning for classification
	Slide 4: K-nearest neighbors
	Slide 5: Case study: SST-2
	Slide 6: Pandas: read and manipulate data
	Slide 7: Pandas basics
	Slide 8: Pandas basics
	Slide 9: Pandas basics
	Slide 10: Pandas basics
	Slide 11: .apply() method
	Slide 12: DataFrame filtering
	Slide 13: DataFrame filtering
	Slide 14: Reading the dataset
	Slide 15: Preprocessing the dataset
	Slide 16: Preprocessing the dataset
	Slide 17: Vectorizing the text
	Slide 18: Training the model
	Slide 19: Evaluating classifiers
	Slide 20: Accuracy
	Slide 21: Recall
	Slide 22: Precision
	Slide 23: F1 score
	Slide 24: Evaluating the predictions
	Slide 25: Understanding individual predictions
	Slide 26: Explaining individual predictions
	Slide 27: Finding what we think should be the nearest neighbor(s)
	Slide 28: Finding what we think should be the nearest neighbor(s)
	Slide 29: Understanding why it isn’t
	Slide 30: Understanding “was” vs. “delight”
	Slide 31: Understanding “was” vs. “delight”
	Slide 32: Examining the two distances
	Slide 33: The problem
	Slide 34: Training a new model
	Slide 35: Training a new model
	Slide 36: Training a new model
	Slide 37: Why did I go through that with you?
	Slide 38: Model confidence
	Slide 39: Model confidence
	Slide 40: Hyperparameters
	Slide 41: Hyperparameters
	Slide 42: Hyperparameters
	Slide 43: Other things to know
	Slide 44: Concluding thoughts

