Supervised Learning with Nearest
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Last lecture

Key idea: Vectorizing text

Concepts Toolkits

 Preprocessing *  Numpy for vectors
 NLTK for preprocessing

* Stemming « Scikit-Learn for vectorizing & similarity

* Tokenization
* \Vectorizing
« Bag-of-words
* TF-IDF
* Textsimilarity
« Jaccard distance
* Cosine distance/similarity
e Others



Supervised learning for classification

Classification: given input text x, classify x by predicting label y

* “Youarean ass!” = toxic * “You are a mensch!” = nontoxic
* “The movie was great.” > positive « “The movie was awful.” = negative
e “SALE! SALE! SALE!” = spam *  “Im breaking up with you.”= not spam

Supervised learning: given a training set X,.._.. with labelsY learn how to predict y

for an unseen input x

train train»

All we know how to do right now is text similarity. How to do supervised classification with
just this tool?



K-nearest neighbors

Basic idea: when trying to classify x, find the K nearest A A
neighbors of x within X,,,,,and let y be the majority-vote O et A
true label y,,,;,, among those K neighbors .
Why does it have to be K? Why not always K=17 O :’ B

m |
How would you implement this given what you already ,"
know? '\ 2

Il

https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

v
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Case study: SST-2

» Stanford Sentiment Treebank (2-class
version)

* Short movie reviews, tagged as
positive or negative in sentiment

» Created by Socheretal. (2013)
» https://nlp.stanford.edu/sentiment/tr

eebank.html

* Included as part of GLUE benchmark
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Pandas: read and manipulate data

Pandas is a useful Python library for reading and manipulating datasets of various kinds
(text included)

https://pandas.pydata.org/

Largely consists of an implementation of “DataFrame” from the R statistical analysis
language
* Swiss army knife data structure

Likely to be covered more thoroughly in a “data science” course.


https://pandas.pydata.org/

Pandas basics

v [22]

v [23]

v [28]

1 import pandas as pd

1 corpus = [

2 {'sentence’:"The film was a delight--I was riveted."”, 'label’':1},

3 {'sentence’':"It's the most delightful and riveting movie.", ‘'label’:1},

4 {'sentence’:"It was a terrible flick, the worst I have ever seen."”, 'label’':0}
S5 {'sentence’':"I have a feeling the film was recut poorly.", ‘label':0}

6]

1 # A pandas dataframe is essentially an excel sheet: a bunch of rows with
2 # labeled columns

3

4 corpus_df = pd.DataFrame(corpus)

5 display(corpus_df)

sentence label Z/:

0 The film was a delight--1 was riveted. 1
1 It's the most delightful and riveting movie. 1
2 It was a terrible flick, the worst | have ever... 0

3 I have a feeling the film was recut poorly. 0




Pandas basics

v [25] 1 # You can access individual columns
' 2 corpus_df["sentence’]

0 The film was a delight--I was riveted.
1 It's the most delightful and riveting movie.
2 It was a terrible flick, the worst I have ever...
3 I have a feeling the film was recut poorly.
Name: sentence, dtype: object

v [26] 1 # And individual rows
' 2 corpus_df.loc[@]

sentence The film was a delight--I was riveted.
label 1
Name: @, dtype: object

v [27] 1 # And individual cells (various ways)
2
3 display(corpus_df[ 'sentence’'].loc[@])
4 display(corpus_df.loc[@][ 'sentence’])
S display(corpus_df.loc[@, 'sentence’])

'The film was a delight--I was riveted.’
‘The film was a delight--I was riveted.’
‘The film was a delight--I was riveted.’




Pandas basics

v [28] 1 # When you get an individual row or column, it comes back as a pd.Series object,
2 # which is a wrapper around an np.array, and can be treated similarly
3
4 10*corpus_df['label’]

10

e

2}
1
2 ]
3
Name: label, dtype: int64

v [29] 1 # It's easy to define new columns

g corpus_df[ "opposite_label'] = 1-corpus_df[ 'label’]
4 corpus_df
sentence label opposite_label é?f
0 The film was a delight--I was riveted. 1 0
1 It's the most delightful and riveting movie. 1 0
2 |twas a terrible flick, the worst | have ever... 0 1
3 | have a feeling the film was recut poorly. 0 1




Pandas basics

v [9] 1# It's also easy to find out how many rows and columns a DataFrame has
2 corpus_df.shape

(4, 3)

v [18] 1 # You can get basic summary statistics of the whole dataframe
2
3 corpus_df.describe()

label opposite_label ?/:

count 4.00000 4.00000
mean 0.50000 0.50000
std 0.57735 0.57735
min  0.00000 0.00000
25% 0.00000 0.00000
50% 0.50000 0.50000
75% 1.00000 1.00000

max 1.00000 1.00000

10



.apply() method

v [13]

1 # When you need to apply a function to a whole column, you can use the apply method:

2

3 corpus_df[ 'lowercased_sentence’'] = corpus_df['sentence’].apply(lambda sentence:sentence.lower())
4 corpus_df

sentence label opposite_label lowercased_sentence
0 The film was a delight--1 was riveted. 1 0 the film was a delight--i was riveted.
1 It's the most delightful and riveting movie. 1 0 it's the most delightful and riveting movie.
2 It was a terrible flick, the worst | have ever... 0 1 itwas a terrible flick, the worst i have ever...
3 I have a feeling the film was recut poorly. 0 1 i have a feeling the film was recut poorly.

11



DataFrame filtering

v [14] 1 # When you create a boolean column, you can use it to filter the dataframe
2
3 positive_label = corpus_df['label’] == 1
4 positive_label

(<) True
1 True
2 False
3 False
Name: label, dtype: bool

¥ [15] 1 corpus_df[positive_label]

sentence label opposite_label lowercased_sentence Z/:
0 The film was a delight--1 was riveted. 1 0 the film was a delight--i was riveted.
1 It's the most delightful and riveting movie. 1 0 it's the most delightful and riveting movie.

12



DataFrame filtering

v [16] 1 sentence_has_was = corpus_df['sentence’'].apply(lambda sentence:'was’' in sentence)
2 sentence_has_was

True
False
True
True
Name: sentence, dtype: bool

WNRRe O

v [17] 1 corpus_df[sentence_has_was]

sentence label opposite_label lowercased_sentence é?f
0 The film was a delight--I was riveted. 1 0 the film was a delight--i was riveted.
2 Itwas a terrible flick, the worst | have ever... 0 1 itwas a temible flick, the worst i have ever...
3 | have a feeling the film was recut poorly. 0 1 i have a feeling the film was recut poorly.

13



Reading the dataset

8 train_df = pd.read_csv(train_url, sep="\t") 1 dev_df = pd.read_csv(dev_url, sep="\t")
9 train_df 2 dev_df
10 3
sentence label ?I: sentence label 2/:
0 hide new secretions from the parental units 0 0 it 's @ charming and often affecting journey . 1
1 contains no wit , only labored gags 0 1 unflinchingly bleak and desperate 0
2  thatloves its characters and communicates som... 1 2  allows us to hope that nolan is poised to emba... 1
3 remains utterly satisfied to remain the same t... 0 3 the acting , costumes , music , cinematography... 1
4 on the worst revenge-of-the-nerds clichés the ... 0 4 it 's slow -- very , very slow . 0
67344 a delightful comedy 1 867 has all the depth of a wading pool . 0
67345 anguish , anger and frustration 0 868 a movie with a real anarchic flair . 1
67346  at achieving the modest , crowd-pleasing goals... 1 869 a subject like this should inspire reaction in... 0
67347 a patient viewer 1 870 ... is an arthritic attempt at directing by ca... 0
67348  this new jangle of noise , mayhem and stupidit... 0 871 looking aristocratic , luminous yet carewom i... 1
67349 rows x 2 columns 872 rows x 2 columns

14



Preprocessing the dataset

i [°] 1 # The SST-2 dataset is already lowercased and space-separated, so the only thing we need to do is stem
A .

3 from nltk import PorterStemmer

4

5 stemmer = PorterStemmer()

6

7 def split_stem_and_join(s):

8 #Split a string by spaces, stem each toke, then stick it back together

9 return ' '.join([stemmer.stem(token) for token in s.strip().split(' ')])

10

11 for df in dfs:

12 df['stemmed_text'] = df['sentence’'].apply(split_stem_and_join)

13 df['tokens'] = df['stemmed_text'].apply(lambda s:s.split(’' ')) # we'll use these later

14
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Preprocessing the dataset

(B

1 train_df
sentence label
0 hide new secretions from the parental units 0
1 contains no wit , only labored gags 0
2 that loves its characters and communicates som... 1
3 remains utterly satisfied to remain the same t... 0
< on the worst revenge-of-the-nerds clichés the ... 0
67344 a delightful comedy 1
67345 anguish , anger and frustration 0
67346  at achieving the modest , crowd-pleasing goals... 1
67347 a patient viewer 1
67348 this new jangle of noise , mayhem and stupidit... 0

67349 rows x 4 columns

stemmed_text

hide new secret from the parent unit

contain no wit , onli labor gag

that love it charact and commun someth rather ...
remain utterli satisfi to remain the same thro...

on the worst revenge-of-the-nerd cliché the fi...

a delight comedi

anguish , anger and frustrat

at achiev the modest , crowd-pleas goal it set...
a patient viewer

thi new jangl of nois , mayhem and stupid must...

tokens

[hide, new, secret, from, the, parent, unit]
[contain, no, wit, ,, onli, labor, gag]

[that, love, it, charact, and, commun, someth,...
[remain, utterli, satisfi, to, remain, the, sa...

[on, the, worst, revenge-of-the-nerd, cliché, ...

[a, delight, comedi]
[anguish, ,, anger, and, frustrat]

[at, achiev, the, modest, ,, crowd-pleas, goal...
[a, patient, viewer]

[thi, new, jangl, of, nois, ,, mayhem, and, st...

16




Vectorizing the text

NOte that we are USing -ﬁt_tra nSform () v [26] 1 from sklearn.feature_extraction.text import TfidfVectorizer

on the training data’ bUt Only ; vectorizer = TfidfVectorizer()
.transform() on the development set. 4

5 train_X = vectorizer.fit_transform(train_df['stemmed_text'])
6 train_y = train_df['label’]
7
Why? 8
9 dev_X = vectorizer.transform(dev_df['stemmed_text'])
10 dev_y = dev_df['label’]
11
12

17



Training the model

Very simple. Just pick a number of neighbors to consider, and a distance metric, and we’re
off to the races.

[27] 1 from sklearn.neighbors import KNeighborsClassifier
2

3 classifier = KNeighborsClassifier(n_neighbors=5, metric='cosine') #our old friend cosine distance
4

S classifier.fit(train_X, train_y)

KNeighborsClassifier(metric="cosine")

18



Evaluating classifiers

Given a set of predictions Y and the true labels Y, there are a few different ways to
evaluate how well we did.

One way to divide up predictions is into errors (¥ # y) and non-errors (y = y)

In a binary classification setting (like SST-2), we can also think about different kinds of
errors and non-errors:

* Truepositives(TPs):y=1; y=1

* True negatives (TNS): }7 = 0; y = 0 https://en.wikipedia.org/wiki/Evaluation_of binary_classifiers
* False positives (FPs):y =1; y =0

* False negatives (FNs): y =0; y =1

Things get more complicated with 3+ classes, but don’t worry about it for now @

19



Accuracy

What percentage of my guesses were correct?

TP+ TN TP + TN - COR
P+N TP+TN+FP+FN COR+ ERR

ACC =

Problematic when the true labels are highly unbalanced (e.g. 90% positive, 10% negative)

* 91% accuracy looks good by itself, but not so great if you could get 90% by just
guessing the most common class.

v

20



Recall

Of all the positives examples, what percentage of them did | correctly guess were positive?

AKA sensitivity, true positive rate (TPR)

rpp - T2 _TF

P TP + FN

Particularly important when we really don’t want to miss any positives
* l.e. we want to avoid false negatives
* What are tasks for which this is this the case?

21



Precision

When | guessed positive, how likely was | to be correct?

AKA positive predictive value (PPV)

TP
PPV = =1 —- FDR
TP + FP

Particularly important when we really don’t want to falsely predict any example as
positive

 What are tasks where this is the case?

v

22



F1score

Defined as the harmonic mean of precision and recall

Balances precision and recall.

PPV x TPR 2TP
PPV +TPR 2TP +FP + FN

Does a better job of handling unbalanced data

« Although you still probably want to calculate F1 for both possible definitions of
“positive”, then take the mean of that value

v

23



Evaluating the predictions

[29]

[3e]

[31]

1 def evaluate_model(X, y, classifier):

2

o n b w

py = classifier.predict(X)

print(f'Accuracy: {accuracy_score(y, py):.3f}")
print(f'Precision: {precision_score(y, py):.3f}")
print(f'Recall: {recall_score(y, py):.3f}")
print(f'F1: {f1_score(y, py):.3f}")

1 evaluate_model(dev_X, dev_y, classifier)

Accuracy: ©.742
Precision: ©.707
Recall: ©.842
F1l: ©.769

1 evaluate_model(train_X[©:1000], train_y[@:1800], classifier)

Accuracy: 0.948
Precision: ©.945
Recall: ©.959
F1l: ©.952

24



Understanding individual predictions

v [32] 1 sentence = "the film was a delight -- i was riveted ."
2 stemmed_sentence = split _stem_and_join(sentence)
3 stemmed_sentence

"the film wa a delight -- i wa rivet .

[33] 1 #the vectorizer won't accept a single string, so give it a list of size 1
2 sentence_vector = vectorizer.transform([stemmed_sentence])
3 sentence_vector

<1x10186 sparse matrix of type '<class 'numpy.floatéd’'>’
with 5 stored elements in Compressed Sparse Row format>

v [34] 1 sentence_prediction = classifier.predict(sentence_vector)
2 sentence_prediction

array([e])

This is wrong! But why?

25



Explaining individual predictions

- [36]

9 de
10
11
12
13
14
15
16
17
18
19
20
21
22

f explain_prediction(input_sentence, classifier, vectorizer):
input_vector = vectorizer.transform([stemmed_sentence])
prediction = classifier.predict(sentence_vector)
print(f'Explaining prediction for "{input_sentence}""')
print(f'Prediction: {prediction[@]}’)

# Calling the kneighbors method gives us back a list of neighbor indices and a list of neighbor distances
distances, neighbor_indices = classifier.kneighbors(input_vector)
print('Neighbors: ")
for distance, index in zip(distances[@], neighbor_indices[@]):
# Using each neighbor index, we can look up the text and true label of that neighbor
neighbor_text = train_df['stemmed_text'].loc[index]
neighbor_label = train_df['label’].loc[index]
print(f'Label: {neighbor_label} - Distance: {distance:.3f} - Text: "{neighbor_text}"')

1 explain_prediction(stemmed_sentence, classifier, vectorizer)

Expla
Predi
Neigh

Label:
Label:
Label:
Label:
Label:

ining prediction for "the film wa a delight -- i wa rivet ."
ction: ©
bors:

1 - Distance: ©.442 - Text: "wa a better film"

1 - Distance: ©.459 - Text: "wa funni”

© - Distance: ©.464 - Text: "but it wa n't ."

© - Distance: ©.480 - Text: "wa n't enough”

® - Distance: ©.482 - Text: "wa onli"

26



Finding what we think should be the
nearest neighbor(s)

4 rivet_train_df = train_df[train_df[ 'sentence’'].apply(lambda s:'rivet’ in s)]
5 rivet_train_df

sentence label stemmed_text tokens ;/:

504 riveting and 1 rivet and [rivet, and]
2204 deliver a riveting and surprisingly romantic ... 1 deliv a rivet and surprisingli romant ride [deliv, a, rivet, and, surprisingli, romant, r...
2980 told through on-camera interviews with several... 1 told through on-camera interview with sever su...  [told, through, on-camera, interview, with, se...
3388 is a riveting , brisk delight . 1 is a rivet , brisk delight . [is. a, rivet, ,, brisk, delight, .]
3691 photographed and staged by mendes with a serie... 1 photograph and stage by mend with a seri of ri... [photograph, and, stage, by, mend, with, a, se...
60644 mostly told through on-camera interviews with ... 1 mostli told through on-camera interview with s...  [mostli, told, through, on-camera, interview, ..
62522 something rare and riveting : a wild ride that... 1 someth rare and rivet : a wild ride that reli ... [someth, rare, and, rivet, :, a, wild, ride, t...
64045 riveting memories 1 rivet memori [rivet, memori]
65421 is something rare and riveting : a wild ride t... 1 is someth rare and rivet : a wild ride that re... [is, someth, rare, and, rivet, :, a, wild, rid...
65651 keeps us riveted with every painful nuance , u... 1 keep us rivet with everi pain nuanc , unexpect... [keep, us, rivet, with, everi, pain, nuanc, ,....

78 rows x 4 columns

27




Finding what we think should be the
nearest neighbor(s)

Found a pretty good one...

[32] 1 sentence = "the film was a delight -- i was riveted ."
2 stemmed_sentence = split_stem_and_join(sentence)
3 stemmed_sentence

‘the film wa a delight -- i wa rivet .’

2980 told through on-camera interviews with several... 1 told through on-camera interview with sever su...  [told, through, on-camera, interview, with, se...
3388 is a riveting , brisk delight . 1 is a rivet , brisk delight . [is, &, rivet, ,, brisk, delight, .]
3691 photographed and staged by mendes with a serie... 1 photograph and stage by mend with a seri of ri...  [photograph, and, stage, by, mend, with, a, se...

28




Understanding why it isn’t

1 # Let's look at the TFIDF values for our original sentence:

2

3 display_tf_idf_vector(stemmed_sentence, vectorizer)

TF-IDF values for "the film wa a delight -- i wa rivet ."

index
0 9702
1 8892
2 7427
3 3304
4 2305

term idf
wa 5.705840
the 2.212073
rivet 7.748210
film 3.685805
delight 6.330761

tfidf
0.723450
0.140236
0.491202
0.233664
0.401342

ot
VS

1 # Now let's look at the values for our comparison
2 display_tf_idf_vector(stemmed_comparison_sentence, vectorizer)

TF-IDF values for "is a rivet , brisk delight .
index term idf tfidf ?/:

0 7427 rivet 7.748210 0.554905
1 4688 is 3.116558 0.223199

N

2305 delight 6.330761 0.453391

«w©

1189  brisk 9.227286 0.660832

29



Understanding “was” vs. “delight”

1 # Let's take a look at how frequent 'wa' is in the dataset
2 display_doc_count('wa’, train_df)

sentence label stemmed_text tokens

13 saw how bad this movie was 0 saw how bad thi movi wa [saw, how, bad, thi, movi, wa]
63 ... a sour little movie at its core ; an explo... 0 ... a sour littt movi at it core ; an explor o... [..., @, sour, littl, movi, at, it, core, ;, a...
247 was produced by jerry bruckheimer and directed... 0 wa produc by jerri bruckheim and direct by joe... [wa, produc, by, jerri, bruckheim, and, direct...
256 halfway through this picture i was beginning t... 0 halfway through thi pictur i wa begin to hate it [halfway, through, thi, pictur, i, wa, begin, ...
585 impresses as a skillfully assembled , highly p... 1  impress as a skill assembl , highli polish and... [impress, as, a, skill, assembl, ,, highli, po...
67230 wondering what all that jazz was about ™" chic... 0 wonder what all that jazz wa about ™" chicago ...  [wonder, what, all, that, jazz, wa, about, *,...
67271  you may be captivated , as i was , by its mood... 1 you may be captiv, asiwa, by it mood, and... [you, may, be, captiv, ,, as, i, wa, ,, by, it...
67275 which was shot two years ago 1 which wa shot two year ago [which, wa, shot, two, year, ago]
67280 where this was lazy but enjoyable , a formula ... 0 where thi wa lazi but enjoy , a formula comedi...  [where, thi, wa, lazi, but, enjoy, ,, a, formu...
67320 a quietly moving look back at what it was to b... 1 a quietli move look back at whatitwatobeii... [a, quietli, move, look, back, at, what, it, w...

608 rows x 4 columns

Document frequency of "wa" in the training set: ©.009
Negative log frequency "wa" in the training set: 4.707




Understanding “was” vs. “delight”

8 display_doc_count('delight’, train_df)

sentence label stemmed_text tokens Z/:
239 this comic gem is as delightful as it is deriv... 1 thi comic gem is as delight as it is deriv . [thi, comic, gem, is, as, delight, as, it, is,...
582 again dazzle and delight us 1 again dazzl and delight us [again, dazzl, and, delight, us]
631 a delightful stimulus 1 a delight stimulu [a, delight, stimulu]

—

697 the problems and characters it reveals are uni... the problem and charact it reveal are univers ... [the, problem, and, charact, it, reveal, are, ...

752 an absolute delight for all audiences 1 an absolut delight for all audienc [an, absolut, delight, for, all, audienc]
65098 delight your senses and 1 delight your sens and [delight, your, sens, and]
65742  adeft, delightful mix of sulky teen drama an... 1 adeft, delight mix of sulki teen drama and o... [a, deft, ,, delight, mix, of, sulki, teen, dr...
65821 there 's a sheer unbridled delight in the way 1 there 's a sheer unbridl delight in the way  [there, 's, a, sheer, unbridl, delight, in, th...
67265 a delightful entree in the tradition of food m... 1 a delight entre in the tradit of food movi . [a, delight, entre, in, the, tradit, of, food,...
67344 a delightful comedy 1 a delight comedi [a, delight, comedi]

325 rows x 4 columns

Document frequency of "delight" in the training set: ©.005
Negative log frequency "delight" in the training set: 5.334
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Examining the two distances

1 inspect_distance('the film wa a delight -- i wa rivet .’, 1 inspect_distance('the film wa a delight -- i wa rivet .',
2 'is a rivet , brisk delight .°, 2 "wa a better film",
3 vectorizer) 3 vectorizer)
Inspecting cosine distance between Inspecting cosine distance between
"the film wa a delight -- i wa rivet ." "the film wa a delight -- i wa rivet .”
and and
"is a rivet , brisk delight ." "wa a better film"
TF-IDF values for "the film wa a delight -- i wa rivet ." TF-IDF values for "the film wa a delight -- i wa rivet ."
TF-IDF values for "is a rivet , brisk delight ." TF-IDF values for "wa a better film"
Merged dataframe of the two vectors: Merged dataframe of the two vectors:
index term idf tfidf_se tfidf_s1 tfidf_product index term idf tfidf_s@ tfidf_s1 tfidf_product
0 9702 wa 5.705840 0.723450 0.000000 0.000000 0 9702 wa 5.705840 0.723450 0.637679 0.461329
1 8892 the 2.212073 0.140236 0.000000 0.000000 1 8892 the 2212073 0.140236 0.000000 0.000000
2 7427 rivet 7.748210 0.491202 0.554905 0.272571 2 7427 rivet 7.748210 0.491202 0.000000 0.000000
3 3304 film 3.685805 0.233664 0.000000 0.000000 3 3304 film 3.685805 0.233664 0.411922 0.096251
4 2305 delight 6.330761 0.401342 0.453391 0.181965 4 2305 delight 6.330761 0.401342 0.000000 0.000000
5 4688 is 3.116558 0.000000 0.223199 0.000000 5 904 better 5.824239 0.000000 0.650911 0.000000
- Sum of tfidf products (dot product of tfidf_vectors): ©.558
6 1189  brisk 9.227286 0.000000 0.660832 0.000000 Magnitude of text @ tfidf vector: 1.000
Sum of tfidf products (dot product of tfidf_vectors): ©.455 Magnitude of text 1 tfidf vector: 1.000
Magnitude of text @ tfidf vector: 1.000 Product of magnitudes: 1.0
Magnitude of teaft 1 tfidf vector: 1.000 Manually-calculated cosine distance: ©.442
Product of magnitudes: 1.0 Scikit-learn cosine distance: ©.442
Manually-calculated cosine distance: ©.545
Scikit-learn cosine distance: ©.545 32




The problem

3 main things going on here:

1. Itturnsoutthat “was” is less common in the corpus (only 608 instances) than we
might expect compared to delight (325 instances)

2. “was” occurs twice in "the film was a delight -- i was riveted .”, so it gets a higher tf-idf
weight for that vector

3. Because cosine distance is normalized by vector magnitude, the tf-idf values in
shorter texts get a higher value than the same ones in longer texts

We can’t do anything about 1 without changing the corpus, or about 3 without using a
different distance metric

But what about 2? @

33



Training a new model

1 # By setting binary=True, the vectorizer will only count each token once per text
2 binary_vectorizer = TfidfVectorizer(binary=True)

1 # So now we vectorize again

2 binary_train_X = binary_vectorizer.fit_transform(train_df['stemmed_text'])
3 binary_train_y = train_df['label’]

4

5

6 binary_dev_X = binary_vectorizer.transform(dev_df[ 'stemmed_text'])

7 binary_dev_y = dev_df['label’]

1 # And train the model again

2 binary_classifier = KNeighborsClassifier(n_neighbors=5, metric='cosine') #our old friend cosine distance
3

4 binary_classifier.fit(binary_train_X, binary_train_y)

KNeighborsClassifier(metric="cosine")

34



Training a new model

1 # And then see if does any better on our original sentence-of-interest
2 explain_prediction(stemmed_sentence, binary_classifier, binary_vectorizer)

Explaining prediction for "the film wa a delight -- i wa rivet ."
Prediction: ©

Neighbors:

Label: 1 - Distance: ©.370 - Text: "rivet”

Label: 1 - Distance: ©.370 - Text: "rivet”

Label: 1 - Distance: ©.397 - Text: "rivet and”

Label: 1 - Distance: ©.402 - Text: "a rivet , brisk delight”
Label: 1 - Distance: ©.4082 - Text: "rivet , brisk delight"
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Training a new model

1 # Okay, much better. The model is clearly still preferring short neighbors to long ones,
2 # but at least it is finding the words that seem more impactful.

3

4 # But is the model more accurate, now that we've made this change?

5

6 print('Evaluating binary vectorizer model on dev set:')

7 evaluate_model(binary_dev_X, binary_dev_y, binary_classifier)

8

9 print('\nEvaluating original vectorizer model on dev set:')

10 evaluate_model(dev_X, dev_y, classifier)

Evaluating binary vectorizer model on dev set:
Accuracy: 0.735

Precision: ©.700

Recall: ©.840

F1: ©.764

Evaluating original vectorizer model on dev set:
Accuracy: 0.742

Precision: ©.707

Recall: 0.842

F1: ©.769
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Why did | go through that with you?

1. 1 had to deal with it when | was writing the code, so now you get to deal with it too.

2. These kinds of issues come up all the time. Model debugging is part of the life of an NLP
or data science practitioner.
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Model confidence

Sometimes you want not just a prediction, but a confidence estimate of how certain the
classifier is in its prediction.

What are some cases where you might want this?

How to calculate confidence varies from model to model, and doing it robustly is a whole
research topic in and of itself.

For K-nearest-neighbors, you can just look at the votes of the K neighbors.
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Model confidence

1 # We can look at the original model’'s prediction on our sentence of interest 1 # Now let's look at the new model's prediction on that same sentence
2 explain_prediction(stemmed_sentence, classifier, vectorizer) 2 explain_prediction(stemmed_sentence, binary_classifier, binary_vectorizer)
Explaining prediction for "the film wa a delight -- i wa rivet ." Explaining prediction for "the film wa a delight -- i wa rivet ."
Prediction: @ Prediction: @
Neighbors: Neighbors:
Label: 1 - Distance: ©.442 - Text: "wa a better film" Label: 1 - Distance: ©.37@ - Text: "rivet"
Label: 1 - Distance: ©.459 - Text: "wa funni” Label: 1 - Distance: ©.370 - Text: "rivet”
Label: © - Distance: ©.464 - Text: "but it wa n't .” Label: 1 - Distance: ©.397 - Text: "rivet and"
Label: @ - Distance: ©.48@ - Text: "wa n't enough” Label: 1 - Distance: ©.402 - Text: "a rivet , brisk delight”
Label: © - Distance: ©.482 - Text: "wa onli” Label: 1 - Distance: ©.402 - Text: "rivet , brisk delight”

1 # This functionality is built into the .predict_proba() method of most sklearn models
2 print(f'Prediction probs for original model on "{stemmed_sentence}":',classifier.predict_proba(sentence_vector))
3 binary_sentence_vector = binary_vectorizer.transform([stemmed_sentence])
4 print(f'Prediction probs for binary model on "{stemmed_sentence}":',binary_classifier.predict_proba(binary_sentence_vector))
Prediction probs for original model on "the film wa a delight -- i wa rivet .": [[0.6 ©.4]]
Prediction probs for binary model on "the film wa a delight -- i wa rivet .": [[©. 1.]]
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Hyperparameters

All these different choices are called “hyperparameters”
* How many neighbors to use
* What distance metric to use
* Whetherto set binary=True or False in the vectorizer

A big part of model building is finding the best (or adequately okay) set of
hyperparameters

Simplest and most common approach is to just search exhaustively over space of possible
values—called grid search

v
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Hyperparameters

1 from itertools import product

2

3 def dummy_train_model(binary:bool, n_neighbors:int, distance_metric:str):
4  print(f'Training a model using the following hyperparameters:')

5 print(f'\tBinary vectorizer: {binary}')

6 print(f'\tNumber of neighbors: {n_neighbors}"')

7 print(f'\tDistance metric: {distance_metric}')

8

9

10 hyperparameter_ranges = {'binary’':[True, False],

11 ‘n_neighbors':[3,5],

12 ‘distance_metric':['cosine’, 'minkowski']}
13

14 # itertools is a very useful library of python functions for doing various things with iterables
15 # the product function takes a list of iterables and lets you iterate through

16 # all combinations of of the items in those iterables

17 combo_iterator = product(*hyperparameter_ranges.values())

18
19 for value_combo in combo_iterator:
20 print()

21 combo_dict = {key:value for key, value in zip(hyperparameter_ranges.keys(), value_combo)}
22 print(combo_dict)
23 dummy_train_model(**combo_dict)
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Hyperparameters

{'binary’': True, 'n_neighbors': 3, ‘'distance_metric': 'cosine'}
Training a model using the following hyperparameters:

Binary vectorizer: True

Number of neighbors: 3

Distance metric: cosine

{'binary': True, 'n_neighbors': 3, 'distance_metric': 'minkowski'}
Training a model using the following hyperparameters:

Binary vectorizer: True

Number of neighbors: 3

Distance metric: minkowski

{'binary’': True, 'n_neighbors’': 5, 'distance_metric': 'cosine'}
Training a model using the following hyperparameters:

Binary vectorizer: True

Number of neighbors: 5

Distance metric: cosine

{'binary’': True, 'n_neighbors’': 5, ‘distance_metric': 'minkowski'}
Training a model using the following hyperparameters:

Binary vectorizer: True

Number of neighbors: S
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Other things to know

How to use each set:

* Trainonthetraining set

* Experimenton the dev set

» Leave the test set alone until the very end (notice we didn’t even use it)

When dealing with temporal data (which SST-2 is not, really)
* Never, ever, train on future data and test on past data
e Super common mistake in the wild
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Concluding thoughts

New toolkit: Pandas

Pretty cool that we can already build models with what little we’ve learned so far. Non-
parametric models so far, but we’re getting there.

When doing nearest-neighbor classification (and classification generally for 1 and 2):
1. How you choose to vectorize your text matters a lot

2. Thedistance metric you use matters a lot

3. Sometimes more sensible individual predictions don't translate to better
performance
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