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Representing text numerically

Before we try to do anything computational with text, we need to create a representation 
our computer can actually work with

We often want this to include preprocessing and normalization that makes it easier to 
treat similar texts similarly

E.g.

• Case

• Stemming

• Tokenization

• Synonymy
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Case study: text similarity

Very frequent basic NLP task: how similar are these two texts? 

Especially in comparison to these other two texts?

Why might we want to do this?

• Web search

• Classification based on similar labeled examples

• Plagiarism detection

• Etc.
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Our corpus

Four short movie reviews:

Review 0: "The film was a delight--I was riveted."

Review 1: "It's the most delightful and riveting movie."

Review 2: "It was a terrible flick, the worst I have ever seen."

Review 3: "I have a feeling the film was recut poorly.“

Which review is most similar to review 0?
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Jaccard similarity

Very basic discrete similarity metric.

Given two sets, divide size of 
intersection by size of union

5https://en.wikipedia.org/wiki/Jaccard_index



Bag-of-words representations

Simplest representation of text is as a “bag-of-words” without respect to order

This is also called a unigram or 1-gram representation.

But how to identify distinct unigrams in text?

• Naïve solution: split on whitespaces

Example:

"The film was a delight--I was riveted.“ →

['The', 'film', 'was', 'a', 'delight--I', 'was', 'riveted.']
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Jaccard similarity for text

"The film was a delight--I was riveted.“ →

['The', 'film', 'was', 'a', 'delight--I', 'was', 'riveted.’]

"It's the most delightful and riveting movie.“ →

["It's", 'the', 'most', 'delightful', 'and', 'riveting', 'movie.’]

Intersection: [none]

Union:

{"It's", 'delightful', 'and', 'the', 'most', 'was', 'film', 

'riveted.', 'movie.', 'The', 'riveting', 'a', 'delight--I’}

Jaccard similarity: 0
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Jaccard similarity for text

"The film was a delight--I was riveted.“ →

['The', 'film', 'was', 'a', 'delight--I', 'was', 'riveted.’]

"It was a terrible flick, the worst I have ever seen." →

['It', 'was', 'a', 'terrible', 'flick,', 'the', 'worst', 'I', 'have', 

'ever', 'seen.’]

Intersection: {'was', 'a’}

Union:

{'terrible', 'flick,', 'seen.', 'riveted.', 'worst', 'I', 'The', 'a', 

'delight--I', 'the', 'It', 'have', 'was', 'film', 'ever’}

Jaccard similarity: 0.133
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Preprocessing text

Various transformations we can perform on text in order to iron out superficial differences 
and home in on the types of similarity we are interested in

What preprocessing you do depends on your application

Basics include:

• Lower-casing 

• Removing punctuation

• Removing common words, aka “stopwords”

• Removing unicode characters

• Often needed for web text

• And a bunch of other stuff. Often some trial-and-error here
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Tokenization

Tokenization: splitting up a string sequence like into its component tokens

• Slightly different from words

Example:

“the film was a delight--I was riveted.“ → ['the', 'film', 'was', 'a', 

'delight', '--', 'i', 'was', 'riveted', '.’]

To do this: NLTK
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NLTK

Natural Language ToolKit: https://www.nltk.org/index.html

Most popular Python text processing package

Competes with SpacY, which is also good

Has lots of basic NLP functionality: tokenization, stemming, parsing, etc. 

• We’ll only be doing tokenization and stemming
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NLTK tokenization
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https://www.nltk.org/api/nltk.tokenize.html



Stemming

Stemming: chop off affixes that distinguish plural versus singular and different tenses of 
words

So we can match e.g. ‘delight’ with ‘delightful’

Example: 

“the film was a delight--I was riveted.“ 
→['the', 'film', 'was', 'a', 'delight', '--', 'i', 'was', 'riveted', ‘.’]

→['the', 'film', 'wa', 'a', 'delight', '--', 'i', 'wa', 'rivet', '.’]

Contrast with lemmatization, which would recover the dictionary versions of the words

• But if all we’re doing is comparing, why would we care?
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NLTK stemming

Very simple
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Jaccard similarity (after preprocessing)

"The film was a delight--I was riveted.“ →

['the', 'film', 'wa', 'a', 'delight', '--', 'i', 'wa', 'rivet', '.’]

"It's the most delightful and riveting movie.“ →

['it', "'", 's', 'the', 'most', 'delight', 'and', 'rivet', 'movi', 

'.’]

Intersection: {'delight', 'rivet', '.', 'the'}

Union:

{"'", 'movi', 'most', 'delight', '--', '.', 'the', 'a', 'it', 'and', 

'rivet', 'film', 'i', 's', 'wa’}

Jaccard similarity: .267
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Jaccard similarity (after preprocessing)

"The film was a delight--I was riveted.“ →

['the', 'film', 'wa', 'a', 'delight', '--', 'i', 'wa', 'rivet', '.’]

"It was a terrible flick, the worst I have ever seen." →

['it', 'wa', 'a', 'terribl', 'flick', ',', 'the', 'worst', 'i', 

'have', 'ever', 'seen', '.’]

Intersection: {'the', 'wa', 'i', '.', 'a’} 

Union:

{'flick', 'delight', 'seen', 'worst', '--', '.', 'the', 'a', 'it', 

'rivet', 'have', ',', 'film', 'terribl', 'i', 'ever', 'wa’}

Jaccard similarity: .294
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Problem 

"The film was a delight--I was riveted.” vs. "It's the most delightful and riveting movie.” 
→Jaccard similarity .267 

{'delight', 'rivet', '.', 'the'}

"The film was a delight--I was riveted.” vs. "It was a terrible flick, the worst I have ever 
seen."  → Jaccard similarity .294

Intersection: {'the', 'wa', 'i', '.', 'a’} 

What’s the problem?
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Vectors

To go beyond very simple preprocessing, you really need to vectorize your text.

A vector is a 1-dimensional set of values, usually numeric. 

Examples:

[0.1 8.2 11.7 0.5]

[1 2 3 4 5]

[True False True True False]

[1 0 0 1 1 0]

Different from a list because you are generally operating on the whole vector at once 
rather than iterating through it. 
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Vector operations

In many ways can be treated a single number

Addition: [1 2 3] + [4 5 6] = [5 7 9]

Subtraction: [1 2 3] - [4 5 6] = [-3 -3 -3]

Division: [1 2 3] / [4 5 6] = [0.25 0.4 0.5]

Multiplication: [1 2 3] * [4 5 6] = [4 10 18]

Power:[1 2 3] ^ 2 = [1 4 9]

But there are certain operations that are only defined for vectors:

Dot product: [1 2 3] · [4 5 6] = sum([1 2 3] * [4 5 6]) = 32

There is a lot of stuff that can be done with vectors (see: all of linear algebra)

We will focus on just what we need to know to do the things we want to do
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Vectors in Python

Not implemented in standard Python

Implemented in wildly popular and ubiquitous numpy library
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Representing bag-of-words as a vector

Basic idea: each text is a vector the size of the 
vocabulary, with the number in each slot 
representing the count of that word in that text
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"The film was a delight--I was riveted.” →

the 1.0

film 1.0

wa 2.0

a 1.0

delight 1.0

-- 1.0

i 1.0

rivet 1.0

. 1.0

it 0.0

' 0.0

s 0.0

most 0.0

and 0.0

movi 0.0

terribl 0.0

flick 0.0

, 0.0

worst 0.0

have 0.0

ever 0.0

seen 0.0

feel 0.0

recut 0.0

poorli 0.0



Jaccard similarity for (binary) vectors

We can (hackily) still do Jaccard similarity if we binarize our vectors to be only 0 and 1

But it’s probably good to learn a similarity metric that can handle continuous values
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Cosine similarity

Given two vectors, defined as the dot product of the vectors divided by the product of the 
magnitudes of the two vectors
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https://en.wikipedia.org/wiki/Cosine_similarity

https://www.oreilly.com/library/view/statistics-for-machine/9781788295758/eb9cd609-e44a-
40a2-9c3a-f16fc4f5289a.xhtml



Jaccard vs cosine similarity

Text 1: The film was a delight--I was riveted. 

Text 2: It's the most delightful and riveting movie.

Count vector 1: [1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 0. 

0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] 

Count vector 2: [1. 0. 0. 0. 1. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 

0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

Jaccard similarity: 0.267

Cosine similarity: 0.365
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Jaccard vs cosine similarity

Text 1: The film was a delight--I was riveted. 

Text 2: It was a terrible flick, the worst I have ever seen.

Count vector 1: [1. 1. 2. 1. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 0. 

0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] 

Count vector 2: [1. 0. 1. 1. 0. 0. 1. 0. 1. 1. 0. 0. 0. 0. 0. 

1. 1. 1. 1. 1. 1. 1. 0. 0. 0.]

Jaccard similarity: 0.294

Cosine similarity: 0.480

Are we done? (still no)
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TF-IDF

TF-IDF: Term Frequency – Inverse Document Frequency

Basic idea: When we make a vector representation of a bag of words, upweight rare 
words and downweight common words

The value at slot i for a given sequence s should be the term frequency of word i within s, 
divided by the document frequency of word i in the corpus as a whole
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Manual TF-IDF

Lots of counting. See associated Colab Notebook
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Easy TF-IDF: Scikit-Learn

Repeat all the preprocessing
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Easy TF-IDF: Scikit-Learn

Then create and use a TfidfVectorizor (or a CountVectorizer if you just want counts)
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Cosine similarity revisited

Text 1: The film was a delight--I was riveted. 

Text 2: It's the most delightful and riveting movie.

Vector 1: [0.1 0.2 0.267 0.133 0.2 0.4 0.133 0.2 0.1 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ] 

Vector 2: [0.1 0. 0. 0. 0.2 0. 0. 0.2 0.1 0.2 0.4 0.4 0.4 0.4 0.4 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ]

Cosine similarity: 0.162

Text 1: The film was a delight--I was riveted. 

Text 3: It was a terrible flick, the worst I have ever seen. List-based Jaccard similarity:

Vector 1: [0.1 0.2 0.267 0.133 0.2 0.4 0.133 0.2 0.1 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ] 

Vector 2: [0.077 0. 0.103 0.103 0. 0. 0.103 0. 0.077 0.154 0. 0. 0. 0. 0. 0.308 0.308 0.308 0.308 0.154 

0.308 0.308 0. 0. 0. ]

Cosine similarity: 0.135
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Other similarity/distance metrics

Euclidean: Euclidean (l2) distance between the two vectors in vector space

Manhattan distance: L1 distance between the two vectors in vector space
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Concluding thoughts

Review 0: "The film was a delight--I was riveted."

Review 1: "It's the most delightful and riveting movie."

Review 2: "It was a terrible flick, the worst I have ever seen.“

With preprocessing and frequency normalization, we conquered several of the problems 
we identified at the beginning.

But what about synonymy (e.g. “film” versus “flick”)?

And what about word order?

And what if we’re more interested in sentence structure than lexical similarity?
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