
Representing text numerically
CS 780/880 Natural Language Processing Lecture 3

Samuel Carton, University of New Hampshire

Representing text numerically

Before we try to do anything computational with text, we need to create a representation
our computer can actually work with

We often want this to include preprocessing and normalization that makes it easier to
treat similar texts similarly

E.g.

• Case

• Stemming

• Tokenization

• Synonymy

2

Case study: text similarity

Very frequent basic NLP task: how similar are these two texts?

Especially in comparison to these other two texts?

Why might we want to do this?

• Web search

• Classification based on similar labeled examples

• Plagiarism detection

• Etc.

3

Our corpus

Four short movie reviews:

Review 0: "The film was a delight--I was riveted."

Review 1: "It's the most delightful and riveting movie."

Review 2: "It was a terrible flick, the worst I have ever seen."

Review 3: "I have a feeling the film was recut poorly.“

Which review is most similar to review 0?

4

Jaccard similarity

Very basic discrete similarity metric.

Given two sets, divide size of
intersection by size of union

5https://en.wikipedia.org/wiki/Jaccard_index

Bag-of-words representations

Simplest representation of text is as a “bag-of-words” without respect to order

This is also called a unigram or 1-gram representation.

But how to identify distinct unigrams in text?

• Naïve solution: split on whitespaces

Example:

"The film was a delight--I was riveted.“ →

['The', 'film', 'was', 'a', 'delight--I', 'was', 'riveted.']

6

Jaccard similarity for text

"The film was a delight--I was riveted.“ →

['The', 'film', 'was', 'a', 'delight--I', 'was', 'riveted.’]

"It's the most delightful and riveting movie.“ →

["It's", 'the', 'most', 'delightful', 'and', 'riveting', 'movie.’]

Intersection: [none]

Union:

{"It's", 'delightful', 'and', 'the', 'most', 'was', 'film',

'riveted.', 'movie.', 'The', 'riveting', 'a', 'delight--I’}

Jaccard similarity: 0

7

Jaccard similarity for text

"The film was a delight--I was riveted.“ →

['The', 'film', 'was', 'a', 'delight--I', 'was', 'riveted.’]

"It was a terrible flick, the worst I have ever seen." →

['It', 'was', 'a', 'terrible', 'flick,', 'the', 'worst', 'I', 'have',

'ever', 'seen.’]

Intersection: {'was', 'a’}

Union:

{'terrible', 'flick,', 'seen.', 'riveted.', 'worst', 'I', 'The', 'a',

'delight--I', 'the', 'It', 'have', 'was', 'film', 'ever’}

Jaccard similarity: 0.133

8

Preprocessing text

Various transformations we can perform on text in order to iron out superficial differences
and home in on the types of similarity we are interested in

What preprocessing you do depends on your application

Basics include:

• Lower-casing

• Removing punctuation

• Removing common words, aka “stopwords”

• Removing unicode characters

• Often needed for web text

• And a bunch of other stuff. Often some trial-and-error here

9

Tokenization

Tokenization: splitting up a string sequence like into its component tokens

• Slightly different from words

Example:

“the film was a delight--I was riveted.“ → ['the', 'film', 'was', 'a',

'delight', '--', 'i', 'was', 'riveted', '.’]

To do this: NLTK

10

NLTK

Natural Language ToolKit: https://www.nltk.org/index.html

Most popular Python text processing package

Competes with SpacY, which is also good

Has lots of basic NLP functionality: tokenization, stemming, parsing, etc.

• We’ll only be doing tokenization and stemming

11

NLTK tokenization

12

https://www.nltk.org/api/nltk.tokenize.html

Stemming

Stemming: chop off affixes that distinguish plural versus singular and different tenses of
words

So we can match e.g. ‘delight’ with ‘delightful’

Example:

“the film was a delight--I was riveted.“
→['the', 'film', 'was', 'a', 'delight', '--', 'i', 'was', 'riveted', ‘.’]

→['the', 'film', 'wa', 'a', 'delight', '--', 'i', 'wa', 'rivet', '.’]

Contrast with lemmatization, which would recover the dictionary versions of the words

• But if all we’re doing is comparing, why would we care?

13

NLTK stemming

Very simple

14

Jaccard similarity (after preprocessing)

"The film was a delight--I was riveted.“ →

['the', 'film', 'wa', 'a', 'delight', '--', 'i', 'wa', 'rivet', '.’]

"It's the most delightful and riveting movie.“ →

['it', "'", 's', 'the', 'most', 'delight', 'and', 'rivet', 'movi',

'.’]

Intersection: {'delight', 'rivet', '.', 'the'}

Union:

{"'", 'movi', 'most', 'delight', '--', '.', 'the', 'a', 'it', 'and',

'rivet', 'film', 'i', 's', 'wa’}

Jaccard similarity: .267

15

Jaccard similarity (after preprocessing)

"The film was a delight--I was riveted.“ →

['the', 'film', 'wa', 'a', 'delight', '--', 'i', 'wa', 'rivet', '.’]

"It was a terrible flick, the worst I have ever seen." →

['it', 'wa', 'a', 'terribl', 'flick', ',', 'the', 'worst', 'i',

'have', 'ever', 'seen', '.’]

Intersection: {'the', 'wa', 'i', '.', 'a’}

Union:

{'flick', 'delight', 'seen', 'worst', '--', '.', 'the', 'a', 'it',

'rivet', 'have', ',', 'film', 'terribl', 'i', 'ever', 'wa’}

Jaccard similarity: .294

16

Problem

"The film was a delight--I was riveted.” vs. "It's the most delightful and riveting movie.”
→Jaccard similarity .267

{'delight', 'rivet', '.', 'the'}

"The film was a delight--I was riveted.” vs. "It was a terrible flick, the worst I have ever
seen." → Jaccard similarity .294

Intersection: {'the', 'wa', 'i', '.', 'a’}

What’s the problem?

17

Vectors

To go beyond very simple preprocessing, you really need to vectorize your text.

A vector is a 1-dimensional set of values, usually numeric.

Examples:

[0.1 8.2 11.7 0.5]

[1 2 3 4 5]

[True False True True False]

[1 0 0 1 1 0]

Different from a list because you are generally operating on the whole vector at once
rather than iterating through it.

18

Vector operations

In many ways can be treated a single number

Addition: [1 2 3] + [4 5 6] = [5 7 9]

Subtraction: [1 2 3] - [4 5 6] = [-3 -3 -3]

Division: [1 2 3] / [4 5 6] = [0.25 0.4 0.5]

Multiplication: [1 2 3] * [4 5 6] = [4 10 18]

Power:[1 2 3] ^ 2 = [1 4 9]

But there are certain operations that are only defined for vectors:

Dot product: [1 2 3] · [4 5 6] = sum([1 2 3] * [4 5 6]) = 32

There is a lot of stuff that can be done with vectors (see: all of linear algebra)

We will focus on just what we need to know to do the things we want to do
19

Vectors in Python

Not implemented in standard Python

Implemented in wildly popular and ubiquitous numpy library

20

Representing bag-of-words as a vector

Basic idea: each text is a vector the size of the
vocabulary, with the number in each slot
representing the count of that word in that text

21

"The film was a delight--I was riveted.” →

the 1.0

film 1.0

wa 2.0

a 1.0

delight 1.0

-- 1.0

i 1.0

rivet 1.0

. 1.0

it 0.0

' 0.0

s 0.0

most 0.0

and 0.0

movi 0.0

terribl 0.0

flick 0.0

, 0.0

worst 0.0

have 0.0

ever 0.0

seen 0.0

feel 0.0

recut 0.0

poorli 0.0

Jaccard similarity for (binary) vectors

We can (hackily) still do Jaccard similarity if we binarize our vectors to be only 0 and 1

But it’s probably good to learn a similarity metric that can handle continuous values

22

Cosine similarity

Given two vectors, defined as the dot product of the vectors divided by the product of the
magnitudes of the two vectors

23

https://en.wikipedia.org/wiki/Cosine_similarity

https://www.oreilly.com/library/view/statistics-for-machine/9781788295758/eb9cd609-e44a-
40a2-9c3a-f16fc4f5289a.xhtml

Jaccard vs cosine similarity

Text 1: The film was a delight--I was riveted.

Text 2: It's the most delightful and riveting movie.

Count vector 1: [1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

Count vector 2: [1. 0. 0. 0. 1. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

Jaccard similarity: 0.267

Cosine similarity: 0.365

24

Jaccard vs cosine similarity

Text 1: The film was a delight--I was riveted.

Text 2: It was a terrible flick, the worst I have ever seen.

Count vector 1: [1. 1. 2. 1. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

Count vector 2: [1. 0. 1. 1. 0. 0. 1. 0. 1. 1. 0. 0. 0. 0. 0.

1. 1. 1. 1. 1. 1. 1. 0. 0. 0.]

Jaccard similarity: 0.294

Cosine similarity: 0.480

Are we done? (still no)

25

TF-IDF

TF-IDF: Term Frequency – Inverse Document Frequency

Basic idea: When we make a vector representation of a bag of words, upweight rare
words and downweight common words

The value at slot i for a given sequence s should be the term frequency of word i within s,
divided by the document frequency of word i in the corpus as a whole

26

Manual TF-IDF

Lots of counting. See associated Colab Notebook

27

Easy TF-IDF: Scikit-Learn

Repeat all the preprocessing

28

Easy TF-IDF: Scikit-Learn

Then create and use a TfidfVectorizor (or a CountVectorizer if you just want counts)

29

Cosine similarity revisited

Text 1: The film was a delight--I was riveted.

Text 2: It's the most delightful and riveting movie.

Vector 1: [0.1 0.2 0.267 0.133 0.2 0.4 0.133 0.2 0.1 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

Vector 2: [0.1 0. 0. 0. 0.2 0. 0. 0.2 0.1 0.2 0.4 0.4 0.4 0.4 0.4 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

Cosine similarity: 0.162

Text 1: The film was a delight--I was riveted.

Text 3: It was a terrible flick, the worst I have ever seen. List-based Jaccard similarity:

Vector 1: [0.1 0.2 0.267 0.133 0.2 0.4 0.133 0.2 0.1 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

Vector 2: [0.077 0. 0.103 0.103 0. 0. 0.103 0. 0.077 0.154 0. 0. 0. 0. 0. 0.308 0.308 0.308 0.308 0.154

0.308 0.308 0. 0. 0.]

Cosine similarity: 0.135

30

Other similarity/distance metrics

Euclidean: Euclidean (l2) distance between the two vectors in vector space

Manhattan distance: L1 distance between the two vectors in vector space

31

Concluding thoughts

Review 0: "The film was a delight--I was riveted."

Review 1: "It's the most delightful and riveting movie."

Review 2: "It was a terrible flick, the worst I have ever seen.“

With preprocessing and frequency normalization, we conquered several of the problems
we identified at the beginning.

But what about synonymy (e.g. “film” versus “flick”)?

And what about word order?

And what if we’re more interested in sentence structure than lexical similarity?

32

	Slide 1: Representing text numerically
	Slide 2: Representing text numerically
	Slide 3: Case study: text similarity
	Slide 4: Our corpus
	Slide 5: Jaccard similarity
	Slide 6: Bag-of-words representations
	Slide 7: Jaccard similarity for text
	Slide 8: Jaccard similarity for text
	Slide 9: Preprocessing text
	Slide 10: Tokenization
	Slide 11: NLTK
	Slide 12: NLTK tokenization
	Slide 13: Stemming
	Slide 14: NLTK stemming
	Slide 15: Jaccard similarity (after preprocessing)
	Slide 16: Jaccard similarity (after preprocessing)
	Slide 17: Problem
	Slide 18: Vectors
	Slide 19: Vector operations
	Slide 20: Vectors in Python
	Slide 21: Representing bag-of-words as a vector
	Slide 22: Jaccard similarity for (binary) vectors
	Slide 23: Cosine similarity
	Slide 24: Jaccard vs cosine similarity
	Slide 25: Jaccard vs cosine similarity
	Slide 26: TF-IDF
	Slide 27: Manual TF-IDF
	Slide 28: Easy TF-IDF: Scikit-Learn
	Slide 29: Easy TF-IDF: Scikit-Learn
	Slide 30: Cosine similarity revisited
	Slide 31: Other similarity/distance metrics
	Slide 32: Concluding thoughts

