

## **Zero- and Few-Shot Learning**

CS 780/880 Natural Language Processing Lecture 21 Samuel Carton, University of New Hampshire

## Last lecture

Pretrained transformer models

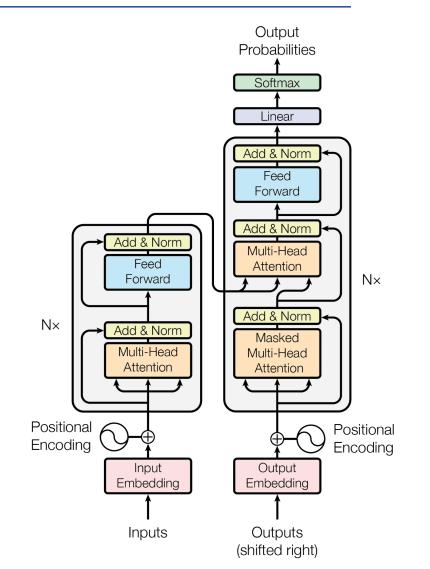
• BERT, RoBERTa, XLNet, RoBERTa, DistilBERT, T5, GPT-X

Encoder-decoder, encoder-only, decoder-only

How to choose?

- Generally, use the biggest you can train efficiently
- But use domain-specific models if appropriate
  - SciBERT
  - MatSciBERT
  - Galactica





# NH

# **Basic model training procedure**

- 1. Pick your favorite model (BERT, T5, DistilBERT, etc.)
- 2. Download pretrained version of it from HuggingFace
- 3. Build an appropriate LightningModule around it
  - 1. Text classification, sequence tagging, translation, etc.
- 4. Find or construct a training/test dataset and preprocess it appropriately
- 5. Train the model using gradient descent
- 6. Evaluate the model
- 7. Profit

# CO

# Transformer-using LightningModule





Not only does HuggingFace make base models available, but they also have variants of each model for different kinds of tasks

### E.g. BertForSequenceClassification

| 1517 | class BertForSequenceClassification(BertPreTrainedModel):                                          |
|------|----------------------------------------------------------------------------------------------------|
| 1518 | <pre>definit(self, config):</pre>                                                                  |
| 1519 | <pre>super()init(config)</pre>                                                                     |
| 1520 | <pre>self.num_labels = config.num_labels</pre>                                                     |
| 1521 | self.config = config                                                                               |
| 1522 |                                                                                                    |
| 1523 | <pre>self.bert = BertModel(config)</pre>                                                           |
| 1524 | classifier_dropout = (                                                                             |
| 1525 | config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob |
| 1526 | )                                                                                                  |
| 1527 | <pre>self.dropout = nn.Dropout(classifier_dropout)</pre>                                           |
| 1528 | <pre>self.classifier = nn.Linear(config.hidden_size, config.num_labels)</pre>                      |
| 1529 |                                                                                                    |
| 1530 | # Initialize weights and apply final processing                                                    |
| 1531 | <pre>self.post_init()</pre>                                                                        |

https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/bert/modeling\_bert.py



### My forward function

| 30 | <pre>def forward(self, y:torch.Tensor, input_ids:torch.Tensor,</pre> |
|----|----------------------------------------------------------------------|
| 31 | attention_mask:torch.Tensor):                                        |
| 32 | # And then the forward function is pretty simple                     |
| 33 | # way simpler than with the LSTM                                     |
| 34 | <pre>bert_result = self.bert(input_ids=input_ids,</pre>              |
| 35 | attention_mask=attention_mask)                                       |
| 36 | # Typically we just use the pooler output for classification         |
| 37 | <pre>cls_output = bert_result['pooler_output']</pre>                 |
| 38 |                                                                      |
| 39 | <pre>py_logits = self.output_layer(cls_output)</pre>                 |
| 40 | <pre>py = torch.argmax(py_logits, dim=1)</pre>                       |
| 41 | <pre>loss = torch.nn.functional.cross_entropy(py_logits, y,</pre>    |
| 42 | reduction='mean')                                                    |
| 43 | <pre>return {'py':py,</pre>                                          |
| 44 | 'loss':loss}                                                         |

## Their forward function

| r    |                                                        |
|------|--------------------------------------------------------|
| 1562 | <pre>outputs = self.bert(</pre>                        |
| 1563 | input_ids,                                             |
| 1564 | attention_mask=attention_mask,                         |
| 1565 | <pre>token_type_ids=token_type_ids,</pre>              |
| 1566 | <pre>position_ids=position_ids,</pre>                  |
| 1567 | head_mask=head_mask,                                   |
| 1568 | inputs_embeds=inputs_embeds,                           |
| 1569 | output_attentions=output_attentions,                   |
| 1570 | <pre>output_hidden_states=output_hidden_states,</pre>  |
| 1571 | return_dict=return_dict,                               |
| 1572 | )                                                      |
| 1573 |                                                        |
| 1574 | <pre>pooled_output = outputs[1]</pre>                  |
| 1575 |                                                        |
| 1576 | <pre>pooled_output = self.dropout(pooled_output)</pre> |
| 1577 | <pre>logits = self.classifier(pooled_output)</pre>     |



E.g. BertForTokenClassification

• \_\_\_\_init\_\_\_ pretty much identical to BertForSequenceClassification

| 1714 | class BertForTokenClassification(BertPreTrainedModel):                                             |
|------|----------------------------------------------------------------------------------------------------|
| 1715 | _keys_to_ignore_on_load_unexpected = [r"pooler"]                                                   |
| 1716 |                                                                                                    |
| 1717 | <pre>definit(self, config):</pre>                                                                  |
| 1718 | <pre>super()init(config)</pre>                                                                     |
| 1719 | <pre>self.num_labels = config.num_labels</pre>                                                     |
| 1720 |                                                                                                    |
| 1721 | <pre>self.bert = BertModel(config, add_pooling_layer=False)</pre>                                  |
| 1722 | classifier_dropout = (                                                                             |
| 1723 | config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob |
| 1724 | )                                                                                                  |
| 1725 | <pre>self.dropout = nn.Dropout(classifier_dropout)</pre>                                           |
| 1726 | <pre>self.classifier = nn.Linear(config.hidden_size, config.num_labels)</pre>                      |
| 1727 |                                                                                                    |
| 1728 | # Initialize weights and apply final processing                                                    |
| 1729 | <pre>self.post_init()</pre>                                                                        |



Difference is in forward functions.

 BertForSequenceClassification output layer operates on [CLS] token hidden vector, while BertForTokenClassification operates on **all** hidden vectors

#### BertForSequenceClassification

| 1562 | outputs = self.bert(                                   |
|------|--------------------------------------------------------|
| 1563 | input_ids,                                             |
| 1564 | attention_mask=attention_mask,                         |
| 1565 | <pre>token_type_ids=token_type_ids,</pre>              |
| 1566 | position_ids=position_ids,                             |
| 1567 | head_mask=head_mask,                                   |
| 1568 | inputs_embeds=inputs_embeds,                           |
| 1569 | output_attentions=output_attentions,                   |
| 1570 | output_hidden_states=output_hidden_states,             |
| 1571 | return_dict=return_dict,                               |
| 1572 | )                                                      |
| 1573 |                                                        |
| 1574 | <pre>pooled_output = outputs[1]</pre>                  |
| 1575 |                                                        |
| 1576 | <pre>pooled_output = self.dropout(pooled_output)</pre> |
| 1577 | <pre>logits = self.classifier(pooled_output)</pre>     |

### BertForTokenClassification

| 1758 | outputs = self.bert(                                       |
|------|------------------------------------------------------------|
| 1759 | input_ids,                                                 |
| 1760 | attention_mask=attention_mask,                             |
| 1761 | <pre>token_type_ids=token_type_ids,</pre>                  |
| 1762 | <pre>position_ids=position_ids,</pre>                      |
| 1763 | head_mask=head_mask,                                       |
| 1764 | inputs_embeds=inputs_embeds,                               |
| 1765 | output_attentions=output_attentions,                       |
| 1766 | <pre>output_hidden_states=output_hidden_states,</pre>      |
| 1767 | return_dict=return_dict,                                   |
| 1768 | )                                                          |
| 1769 |                                                            |
| 1770 | <pre>sequence_output = outputs[0]</pre>                    |
| 1771 |                                                            |
| 1772 | <pre>sequence_output = self.dropout(sequence_output)</pre> |
| 1773 | <pre>logits = self.classifier(sequence_output)</pre>       |

# **Hugging Face**



Hugging Face (as accessed through the transformers Python library) is a fantastic resource.

• It's never been easier to grab powerful NLP models and begin customizing them to suit your own needs

### BUT.

The whole concept of "training" NLP models is beginning to go out the window in favor of **zero-** and **few-shot learning** with massive pretrained large language models (GPT-3, ChatGPT, GPT-4, etc.)



## **Example: Materials information extraction**

O'Gorman et al., 2021 collect a nice dataset for **entity extraction** from the text of materials science papers

- 595 papers, 160k tokens
- Took a PhD student and 2 postdocs 3 months to do
- Trained BERT gets 89% token-by-token accuracy
  - (You'd use BertForTokenClassification for this)
- Would probably work even better with a Matsci-specific BERT variant
  - E.g. MatBERT, MatSciBERT, etc.

P2- Na2/3Ni1/4TixMn3/4-xO2 was prepared through a simple solid state method. The precursor solution was prepared by mixing desirable amount of Ni(CH3COO)2\*4H2O, Mn(CH3COO)2\*4H2O and CH3COONa and titanium citrate solution. The obtained mixture was heated at 400 C for 12 h. The ground powder was **ball-milled** for 1 h and was subsequently calcinated at 900 degC in for 12 to synthesize Na2/3Ni1/4TixMn3/4-xO2 (x=0, 0.05, 0.10, 0.15, 0.20, 0.30).

Figure 1: Part of an example synthesis procedure included in the dataset with entity annotations from Zhao et al. (2015). Colors represent entity types and underlines represent span boundaries. Colors: Target, Nonrecipe-operation, Unspecified-Material, Operation, Material, Condition-Unit, Number.

**MS-Mentions**: consistently annotating entity mentions in materials science procedural text

T O'Gorman, Z Jensen, S Mysore... - Proceedings of the ..., 2021 - aclanthology.org

... Table 1 outlines the resultant size of our corpus, MS-MENTIONS. We also list the corpus

statistics for the Materials Science Procedural Text (MSPT) corpus described in Mysore et al. (...

☆ Save 59 Cite Cited by 1 Related articles All 5 versions ≫

# Example: Materials information extraction

Compare and contrast that with a prompt that Satanu came up with for getting GPT-3 to extract information from the abstract of a paper about alloys

Task is to extract information from the given paragraph based on the question.

####

Answer the question concisely only by extracting exact words from the paragraph.

######

Question: What is the high entropy alloy system explored in the above text?

Paragraph: [...] Here, we present a first-principles investigation of non-equimolar chromium-manganese-iron-cobalt-nickel (CrMnFeCoNi) HEAs and effects of molybdenum (Mo) and niobium (Nb) substitutions on cost, phase stability and solubility, and mechanical and thermal performance up to 1000 K operational temperature. [...] Lower Ni concentration leads to lower thermal conductivity, indicating better thermal insulation, while reducing Mn concentration significantly increases the thermal conductivity, indicating better performing heat sinks. [...] Answer: CrMnFeCoNi [...] According to the paragraph, what impact does concentration of Ni have on the system? [...]

Answer: Lower Ni concentration leads to lower thermal conductivity.

[...] According to the paragraph, what impact does concentration of Mn have on the system? [...]

Answer: Lowering Mn concentration significantly increases the thermal conductivity.

[...] What are the target property explored according to the paragraph? [...] Answer: Thermal and mechanical properties, cost, phase stability and solubility, thermal performance, mechanical performance, thermal insulation, thermal conductivity, thermal expansion coefficient.

## How is this possible?



Think back to why BERT & co turn out to be a good starting point for fine-tuning NLP models to do specific things (like information extraction)

• Analogous to teaching someone English before teaching them to do specific task

But what happens if you teach someone to be **really good** at English before teaching them to do the specific task?

• Then maybe you don't actually need to "teach" them to do the task, maybe you can just ask them to do it

## Example: Materials information extraction



No real materials-science knowledge needed to do this task—just reading comprehension

Task is to extract information from the given paragraph based on the question.

#####

Answer the question concisely only by extracting exact words from the paragraph.

######

Question: What is the high entropy alloy system explored in the above text?

Paragraph: [...] Here, we present a first-principles investigation of non-equimolar chromium-manganese-iron-cobalt-nickel (CrMnFeCoNi) HEAs and effects of molybdenum (Mo) and niobium (Nb) substitutions on cost, phase stability and solubility, and mechanical and thermal performance up to 1000 K operational temperature. [...] Lower Ni concentration leads to lower thermal conductivity, indicating better thermal insulation, while reducing Mn concentration significantly increases the thermal conductivity, indicating better performing heat sinks. [...] Answer: CrMnFeCoNi [...] According to the paragraph, what impact does concentration of Ni have on the system? [...]

Answer: Lower Ni concentration leads to lower thermal conductivity.

[...] According to the paragraph, what impact does concentration of Mn have on the system? [...]

Answer: Lowering Mn concentration significantly increases the thermal conductivity.

[...] What are the target property explored according to the paragraph? [...] Answer: Thermal and mechanical properties, cost, phase stability and solubility, thermal performance, mechanical performance, thermal insulation, thermal conductivity, thermal expansion coefficient.

## Language modeling versus world knowledge



And these language models can pick up world knowledge as well!

Remember that the training objective for language modeling is: given words {w0, w1, ...,wt-1}, predict word wt.

So what happens when we apply our own internal language model to the following prompt:

The state nickname of New Hampshire is

## Language modeling versus world knowledge



And these language models can pick up world knowledge as well!

Remember that the training objective for language modeling is: given words {w0, w1, ...,wt-1}, predict word wt.

So what happens when we apply our own internal language model to the following prompt:

The state nickname of New Hampshire is

The Granite State

GPT-3 got it right! So... is that language modeling or is it world knowledge?

• Both!

## **GPT-3**



- Published in 2020
- Decoder-only transformer model (same architecture as GPT-1 and 2)
- Trained on Common Crawl
  - 40 TB of text scraped from the web
- 175 billion parameters
- Blew a bunch of NLP benchmarks out of the water, particularly in **zero** and **few-shot** settings

#### Language models are few-shot learners

<u>T Brown, B Mann, N Ryder</u>... - Advances in neural ..., 2020 - proceedings.neurips.cc ... up **language models** greatly improves task-agnostic, **few-shot** ... GPT-3, an autoregressive **language model** with 175 billion ... **language model**, and test its performance in the **few-shot** ... ☆ Save 𝔊 Cite Cited by 9123 Related articles All 18 versions 🃎

## **Zero-shot learning**



**Basic idea:** rather than fine-tune a language model to do a specific task (the way we would do with BERT, XLNet, etc.), we just **ask it to do what we want** and rely on its intrinsic capability to do it correctly.

Task is to extract information from the given paragraph based on the question.

#### ####

Answer the question concisely only by extracting exact words from the paragraph.

#### ######

Question: What is the high entropy alloy system explored in the above text?

Paragraph: [...] Here, we present a first-principles investigation of non-equimolar chromium-manganese-iron-cobalt-nickel (CrMnFeCoNi) HEAs and effects of molybdenum (Mo) and niobium (Nb) substitutions on cost, phase stability and solubility, and mechanical and thermal performance up to 1000 K operational temperature. [...] Lower Ni concentration leads to lower thermal conductivity, indicating better thermal insulation, while reducing Mn concentration significantly increases the thermal conductivity, indicating better performing heat sinks. [...] Answer: CrMnFeCoNi [...] According to the paragraph, what impact does concentration of Ni have on the system? [...]

Answer: Lower Ni concentration leads to lower thermal conductivity.

[...] According to the paragraph, what impact does concentration of Mn have on the system? [...] Answer: Lowering Mn concentration significantly increases the thermal conductivity.

[...] What are the target property explored according to the paragraph? [...] Answer: Thermal and mechanical properties, cost, phase stability and solubility, thermal performance, mechanical performance, thermal insulation, thermal conductivity, thermal expansion coefficient.

## **Few-shot learning**



**Basic idea**: for even better performance than zero-shot learning, we give the model one or more examples of what we want it to do as part of the prompt

Popularized by Brown et al., (2020)

#### **Standard Prompting**

#### Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

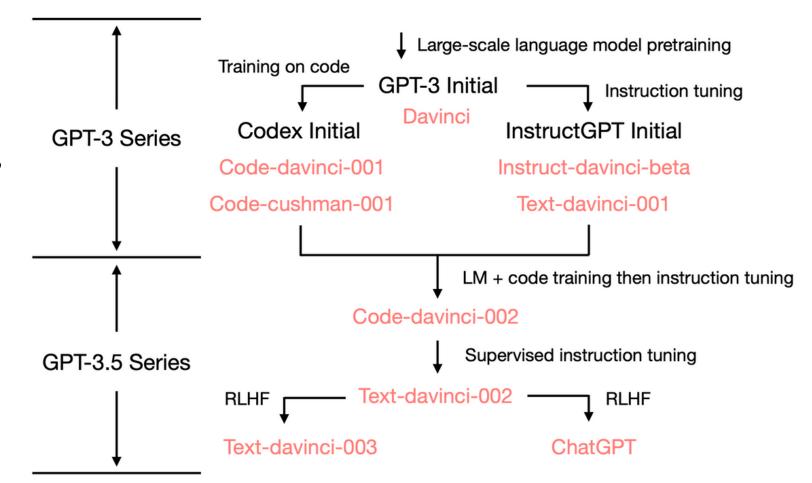


## ChatGPT

ChatGPT is now based on GPT-4

But when it was first released, it was based on a version of GPT-3 that had been additionally trained with:

- Code
- Instruction tuning
- Reinforcement Learning from Human Feedback (RLHF)





# **Concluding thoughts**



GPT-3, ChatGPT, GPT-4

Traditional model training versus zero- and few-shot learning