
The Transformer Architecture
CS 780/880 Natural Language Processing Lecture 18

Samuel Carton, University of New Hampshire



Last lecture

Sequence-to-sequence models

• Main application: translation

Attention

• Improves performance of sequence-to-sequence models

• Improves interpretability of classifiers

Model saving/loading

2



The main problem with RNNs

Because of vanishing gradients, it is hard for RNNs to learn to remember information in 
early timesteps that is needed for later timesteps (i.e. long-term dependencies)

This leads to catastrophic forgetting

RNNs are also not very parallelizable

3

GRU

LSTM

https://en.wikipedia.org/wiki/Gated_recurrent_unit

https://en.wikipedia.org/wiki/Long_short-term_memory



Solution: attention?

With sequence-to-sequence models, we discovered that attention is a valuable 
mechanism for augmenting the final context vector

So what if we just want to encode one sequence?

4



Transformers

The Transformer is a non-recurrent architecture that uses self-attention to represent 
relationships between words in the same sequence

• As opposed to between words in the input and output sequence

• Although, transformers are also be used in sequence-to-sequence models (and actually 
do both kinds of attention)

Invented in Attention is All You Need (Vaswani et al., 2017)

5



Transformers

Content for this lecture drawn largely from The Illustrated Transformer: 
https://jalammar.github.io/illustrated-transformer/

• Super duper popular breakdown

• Not a Medium article, but a good model of how influential these breakdowns can be 
(hint hint)

6

https://jalammar.github.io/illustrated-transformer/


Encoder and decoder

The full transformer model includes an encoder (which encodes the text into a vector) and 
a decoder (which converts the encoded vector back into a text)

7



Encoder and decoder

Each component is actually a stack of repeated encoder or decoder layers

8



Encoder

The encoder consists of a “self-attention” layer, followed by a feedforward layer

9



Decoder

And then the decoder consists of both of these elements, plus an additional layer that 
learns to attend to the output from the encoder. 

10



Encoder detail

11



Encoder detail

12



Self-attention

Basic idea: The model will learn an attention weight 
from each word wi to each word wj, representing how 
important wj is for understanding the meaning of wj

In this example, in order to understand “it”, we really 
need to understand “the” and “animal”, since that is 
what “it” is referring to

13



Self-attention detail

14



Self-attention detail

15



Self-attention detail

16



Self-attention detail

17



Self-attention detail

18



Self-attention detail

19



Self-attention detail

20



Multi-headed attention

21



Multi-headed attention

22



Encoder detail

23



Multi-headed attention

24



All self-attention steps

25



Multi-headed attention

26



Positional embeddings

27



Positional embeddings

28



Residuals

29



Layer normalization

Layer normalization is a training trick where you take the output from a neural net layer 
and statistically normalize it so that it has a mean value of 0 and a variance of 1

• This turns out to improve training speed and consistency. 

• It’s kind of just one of those handy tricks that people have discovered to generally 
improve deep learning, similar to dropout and L2 regularization.

30



Residuals

31



Residuals

32



Encoder-decoder

33



Encoder-decoder

34



Encoder-decoder

35



Decoder output layer

36



Encoder-decoder

37



Decoder

38



Decoder

39



Transformer

Many components!

• Self-attention (NxN)

• Multiple self-attention heads per layer

• Multiple self-attention layers

• Encoder + decoder

Worth it?

40



Reading SST-2

41



Installing Transformers

42



Transformer tokenizer

43



Transformer tokenizer

44



Transformer tokenizer

45



Transformer tokenizer

46



Dataset

47



DataLoader

48



Pretrained transformers

49



Pretrained Transformers

50



Transformer-using model

51



Transformer-using model

52



Transformer-using model

53



Training

54



Training

55


	Slide 1: The Transformer Architecture
	Slide 2: Last lecture
	Slide 3: The main problem with RNNs
	Slide 4: Solution: attention?
	Slide 5: Transformers
	Slide 6: Transformers
	Slide 7: Encoder and decoder
	Slide 8: Encoder and decoder
	Slide 9: Encoder
	Slide 10: Decoder
	Slide 11: Encoder detail
	Slide 12: Encoder detail
	Slide 13: Self-attention
	Slide 14: Self-attention detail
	Slide 15: Self-attention detail
	Slide 16: Self-attention detail
	Slide 17: Self-attention detail
	Slide 18: Self-attention detail
	Slide 19: Self-attention detail
	Slide 20: Self-attention detail
	Slide 21: Multi-headed attention
	Slide 22: Multi-headed attention
	Slide 23: Encoder detail
	Slide 24: Multi-headed attention
	Slide 25: All self-attention steps
	Slide 26: Multi-headed attention
	Slide 27: Positional embeddings
	Slide 28: Positional embeddings
	Slide 29: Residuals
	Slide 30: Layer normalization
	Slide 31: Residuals
	Slide 32: Residuals
	Slide 33: Encoder-decoder
	Slide 34: Encoder-decoder
	Slide 35: Encoder-decoder
	Slide 36: Decoder output layer
	Slide 37: Encoder-decoder
	Slide 38: Decoder
	Slide 39: Decoder
	Slide 40: Transformer
	Slide 41: Reading SST-2
	Slide 42: Installing Transformers
	Slide 43: Transformer tokenizer
	Slide 44: Transformer tokenizer
	Slide 45: Transformer tokenizer
	Slide 46: Transformer tokenizer
	Slide 47: Dataset
	Slide 48: DataLoader
	Slide 49: Pretrained transformers
	Slide 50: Pretrained Transformers
	Slide 51: Transformer-using model
	Slide 52: Transformer-using model
	Slide 53: Transformer-using model
	Slide 54: Training
	Slide 55: Training

