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Last lecture

Sequence-to-sequence models

• Main application: translation

Attention

• Improves performance of sequence-to-sequence models

• Improves interpretability of classifiers

Model saving/loading
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The main problem with RNNs

Because of vanishing gradients, it is hard for RNNs to learn to remember information in 
early timesteps that is needed for later timesteps (i.e. long-term dependencies)

This leads to catastrophic forgetting

RNNs are also not very parallelizable
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GRU

LSTM

https://en.wikipedia.org/wiki/Gated_recurrent_unit

https://en.wikipedia.org/wiki/Long_short-term_memory



Solution: attention?

With sequence-to-sequence models, we discovered that attention is a valuable 
mechanism for augmenting the final context vector

So what if we just want to encode one sequence?
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Transformers

The Transformer is a non-recurrent architecture that uses self-attention to represent 
relationships between words in the same sequence

• As opposed to between words in the input and output sequence

• Although, transformers are also be used in sequence-to-sequence models (and actually 
do both kinds of attention)

Invented in Attention is All You Need (Vaswani et al., 2017)
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Transformers

Content for this lecture drawn largely from The Illustrated Transformer: 
https://jalammar.github.io/illustrated-transformer/

• Super duper popular breakdown

• Not a Medium article, but a good model of how influential these breakdowns can be 
(hint hint)
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https://jalammar.github.io/illustrated-transformer/


Encoder and decoder

The full transformer model includes an encoder (which encodes the text into a vector) and 
a decoder (which converts the encoded vector back into a text)
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Encoder and decoder

Each component is actually a stack of repeated encoder or decoder layers
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Encoder

The encoder consists of a “self-attention” layer, followed by a feedforward layer
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Decoder

And then the decoder consists of both of these elements, plus an additional layer that 
learns to attend to the output from the encoder. 
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Encoder detail
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Encoder detail
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Self-attention

Basic idea: The model will learn an attention weight 
from each word wi to each word wj, representing how 
important wj is for understanding the meaning of wj

In this example, in order to understand “it”, we really 
need to understand “the” and “animal”, since that is 
what “it” is referring to
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Self-attention detail
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Self-attention detail
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Self-attention detail
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Self-attention detail
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Self-attention detail
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Self-attention detail
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Self-attention detail
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Multi-headed attention
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Multi-headed attention
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Encoder detail
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Multi-headed attention
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All self-attention steps

25



Multi-headed attention
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Positional embeddings
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Positional embeddings
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Residuals
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Layer normalization

Layer normalization is a training trick where you take the output from a neural net layer 
and statistically normalize it so that it has a mean value of 0 and a variance of 1

• This turns out to improve training speed and consistency. 

• It’s kind of just one of those handy tricks that people have discovered to generally 
improve deep learning, similar to dropout and L2 regularization.
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Residuals
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Residuals
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Encoder-decoder
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Encoder-decoder
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Encoder-decoder
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Decoder output layer
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Encoder-decoder
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Decoder
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Decoder
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Transformer

Many components!

• Self-attention (NxN)

• Multiple self-attention heads per layer

• Multiple self-attention layers

• Encoder + decoder

Worth it?
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Reading SST-2
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Installing Transformers
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Transformer tokenizer
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Transformer tokenizer
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Transformer tokenizer
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Transformer tokenizer
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Dataset
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DataLoader
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Pretrained transformers
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Pretrained Transformers
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Transformer-using model
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Transformer-using model
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Transformer-using model
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Training

54



Training
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