

The Transformer Architecture

CS 780/880 Natural Language Processing Lecture 18 Samuel Carton, University of New Hampshire

Last lecture

Sequence-to-sequence models

• Main application: translation

Attention

- Improves performance of sequence-to-sequence models
- Improves interpretability of classifiers

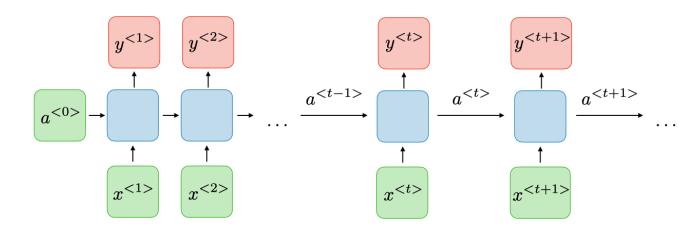
Model saving/loading

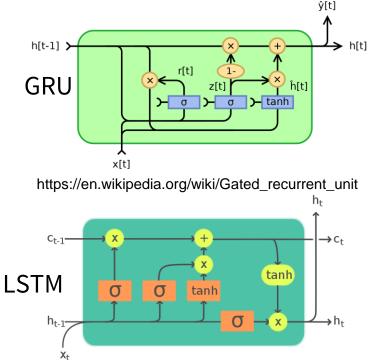
The main problem with RNNs

Because of **vanishing gradients**, it is hard for RNNs to learn to remember information in early timesteps that is needed for later timesteps (i.e. **long-term dependencies**)

This leads to **catastrophic forgetting**

RNNs are also not very parallelizable





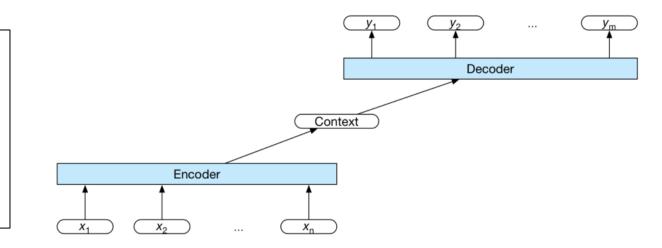
https://en.wikipedia.org/wiki/Long_short-term_memory

Solution: attention?

With sequence-to-sequence models, we discovered that **attention** is a valuable mechanism for augmenting the final context vector

So what if we just want to encode one sequence?

Neural machine translation by jointly learning to align and translate D Bahdanau, K Cho, Y Bengio - arXiv preprint arXiv:1409.0473, 2014 - arxiv.org Neural machine translation is a recently proposed approach to machine translation. Unlike the traditional statistical machine translation, the neural machine translation aims at building a single neural network that can be jointly tuned to maximize the translation performance. The models proposed recently for neural machine translation often belong to a family of encoder-decoders and consists of an encoder that encodes a source sentence into a fixedlength vector from which a decoder generates a translation. In this paper, we conjecture that ... \hat{T} Save \mathfrak{M} Cite Cited b 28013 Related articles All 28 versions \mathfrak{M}



The **Transformer** is a **non-recurrent** architecture that uses **self-attention** to represent relationships between words in the **same sequence**

- As opposed to between words in the input and output sequence
- Although, transformers are also be used in sequence-to-sequence models (and actually do both kinds of attention)

Invented in Attention is All You Need (Vaswani et al., 2017)

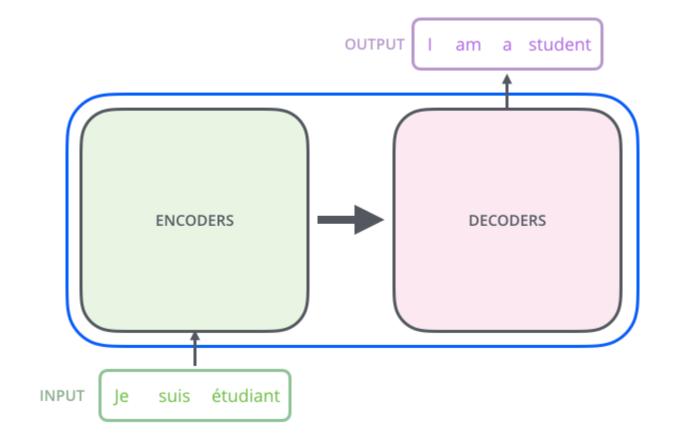


Content for this lecture drawn largely from The Illustrated Transformer: <u>https://jalammar.github.io/illustrated-transformer/</u>

- Super duper popular breakdown
- Not a Medium article, but a good model of how influential these breakdowns can be (hint hint)

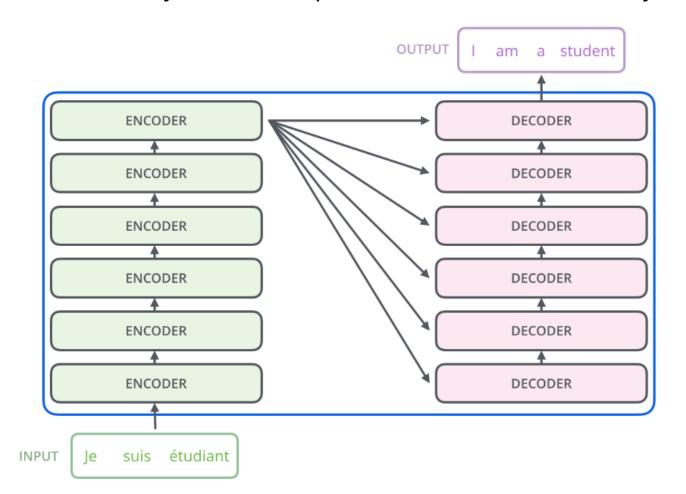
Encoder and decoder

The full transformer model includes an **encoder** (which encodes the text into a vector) and a **decoder** (which converts the encoded vector back into a text)



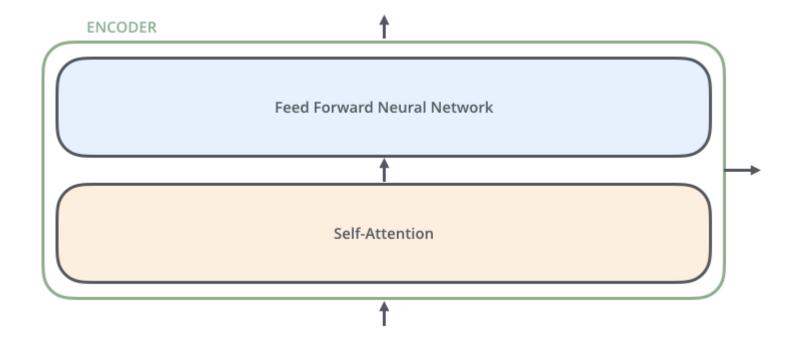
Encoder and decoder

Each component is actually a stack of repeated encoder or decoder layers



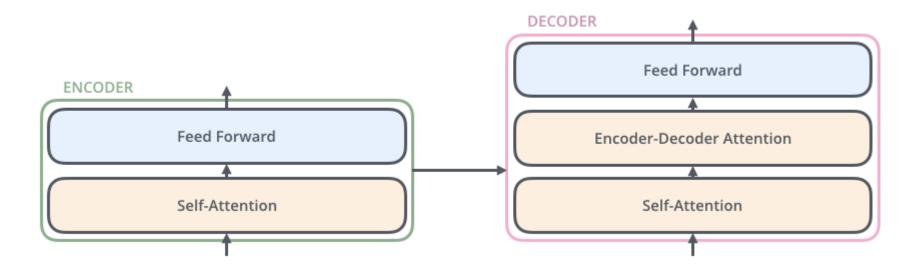
Encoder

The encoder consists of a "self-attention" layer, followed by a feedforward layer

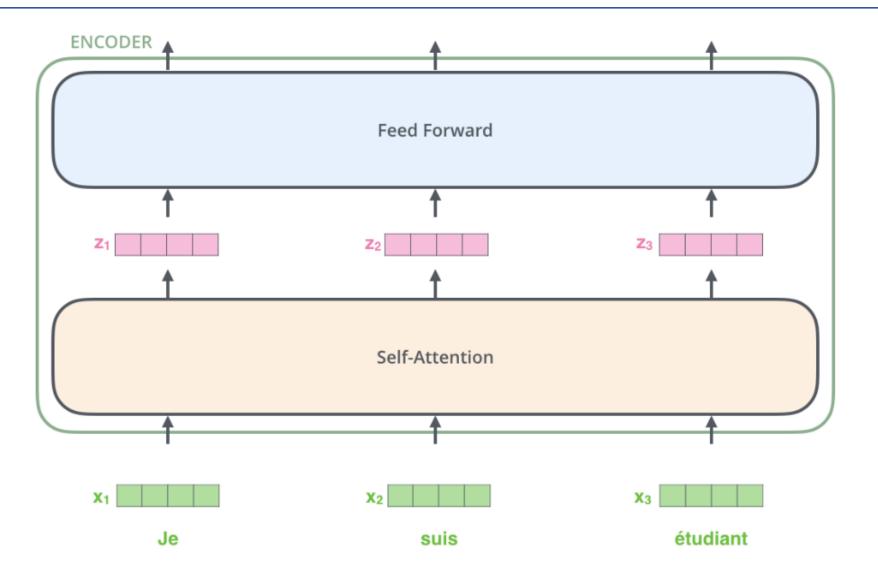


Decoder

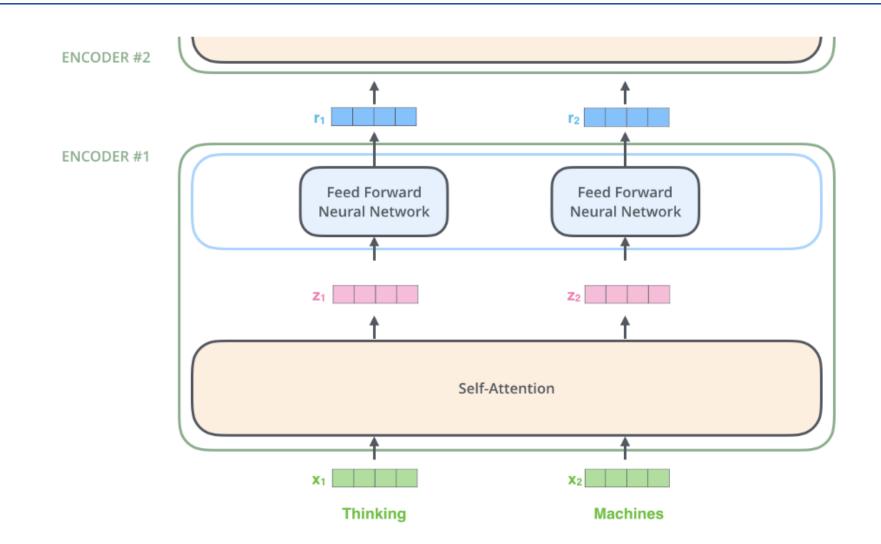
And then the decoder consists of both of these elements, plus an additional layer that learns to attend to the output from the encoder.



Encoder detail



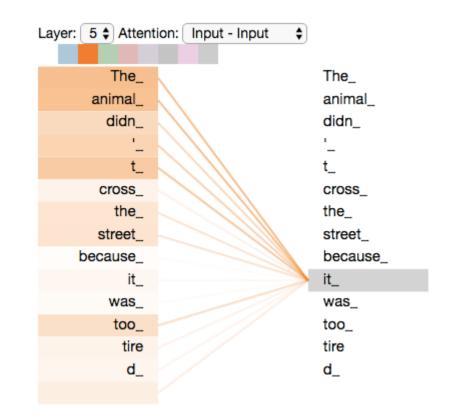
Encoder detail

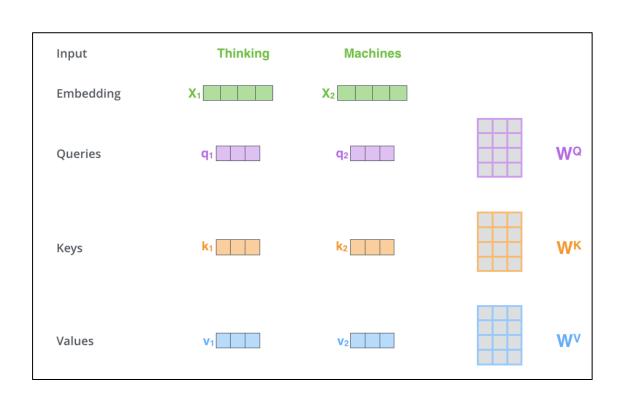


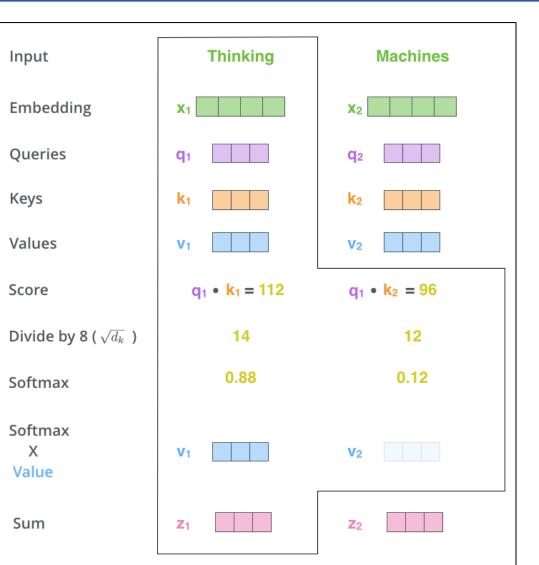
Self-attention

Basic idea: The model will learn an attention weight from each word w_i to each word w_i, representing how important w_i is for understanding the meaning of w_i

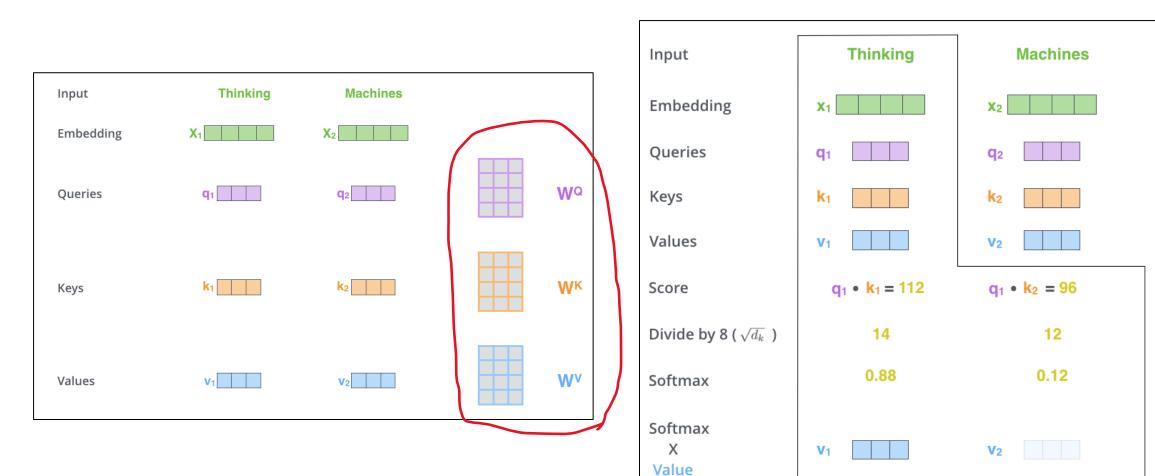
In this example, in order to understand "it", we really need to understand "the" and "animal", since that is what "it" is referring to







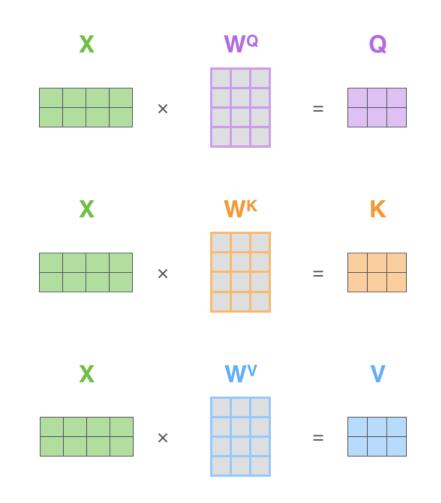
14

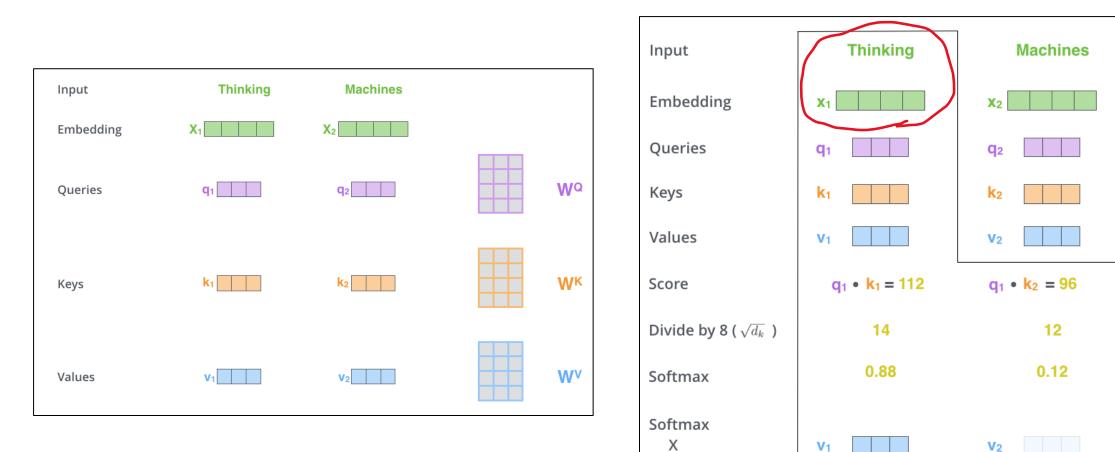


Sum

Z1

 \mathbf{Z}_2



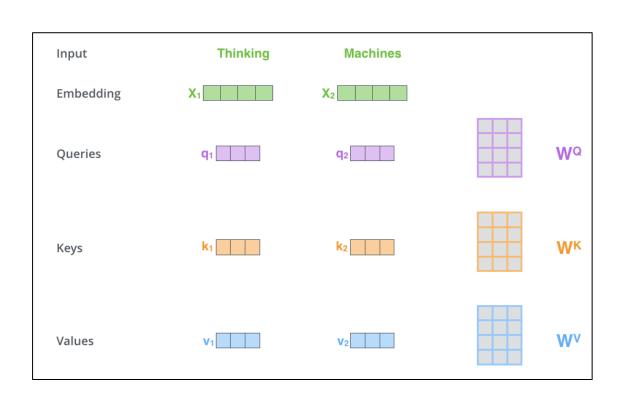


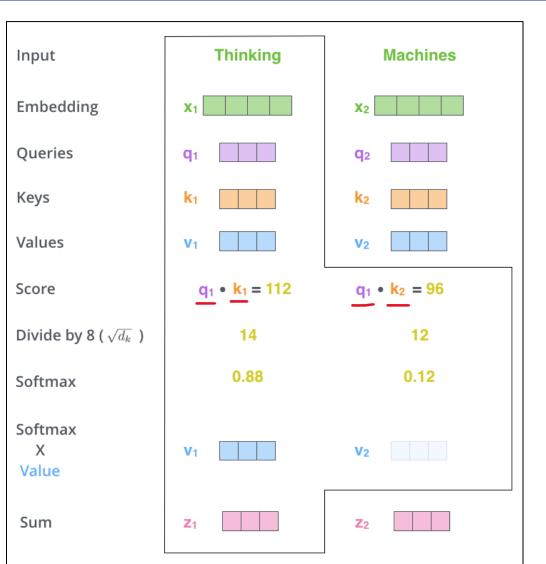
17

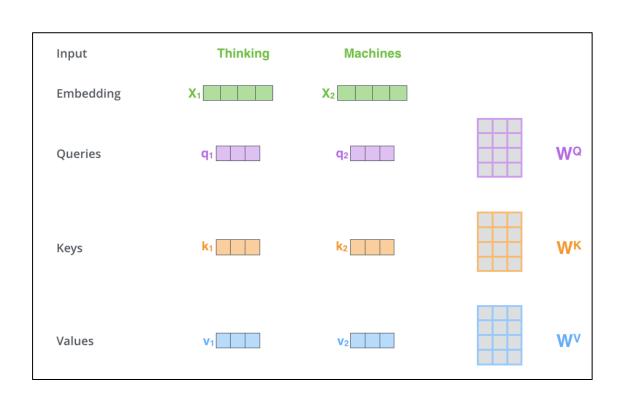
 \mathbf{Z}_2

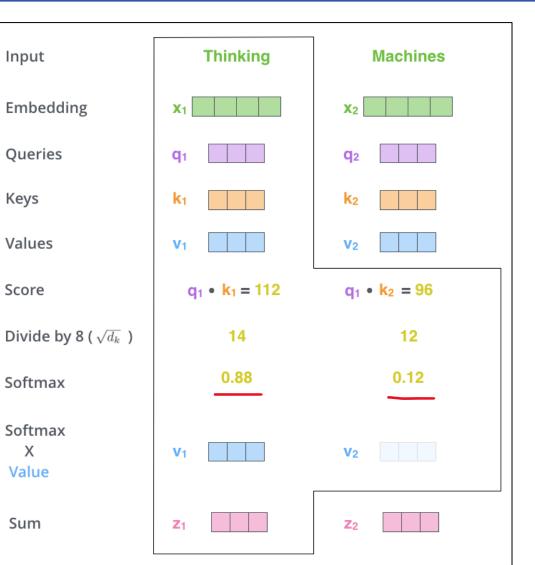
Z1

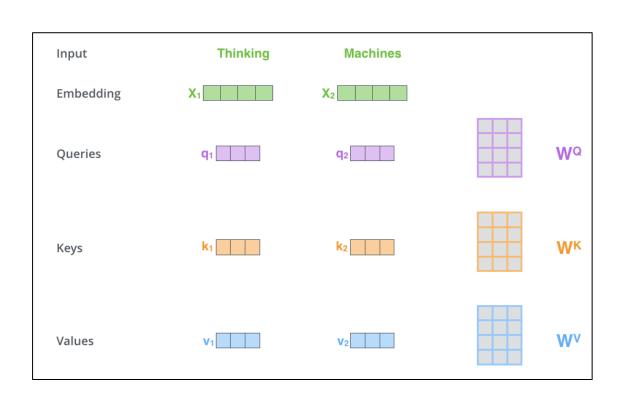
Value

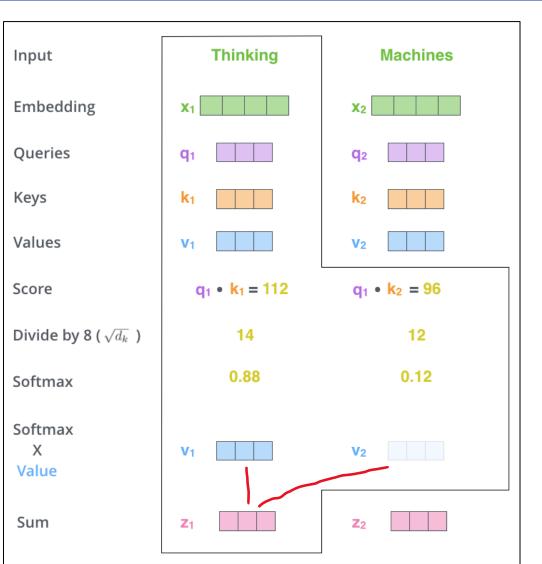






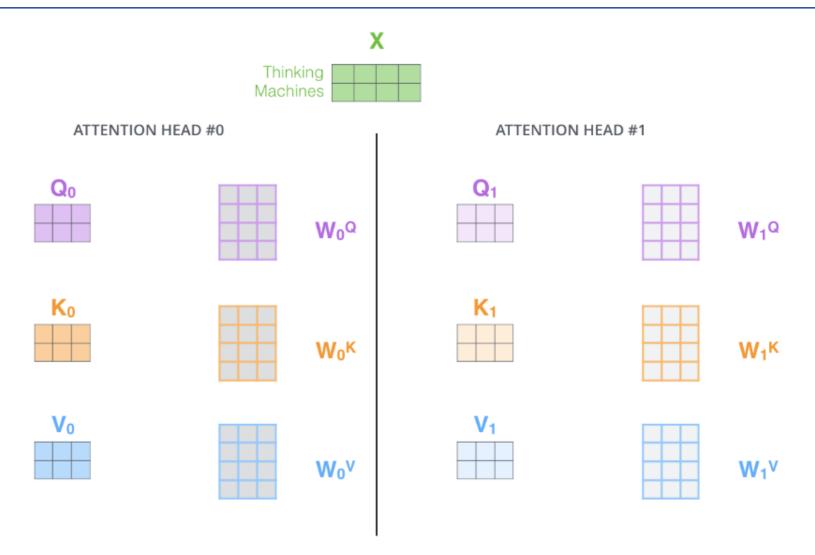






20

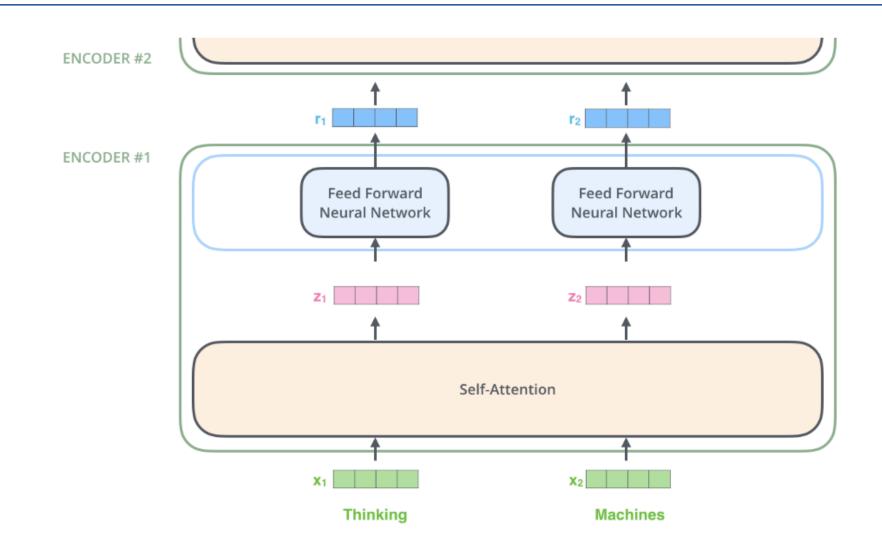
Multi-headed attention



Multi-headed attention



Encoder detail



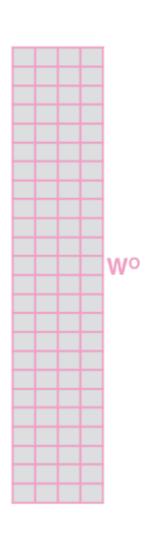
Multi-headed attention

1) Concatenate all the attention heads

Z ₀	Z 1	Z 2	Z 3	Z 4	Z 5	Z 6	Z 7

2) Multiply with a weight matrix W⁰ that was trained jointly with the model

Х

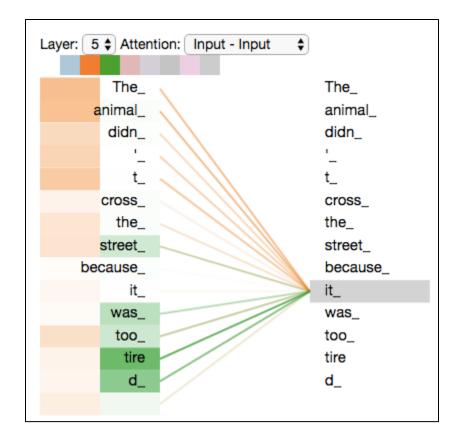


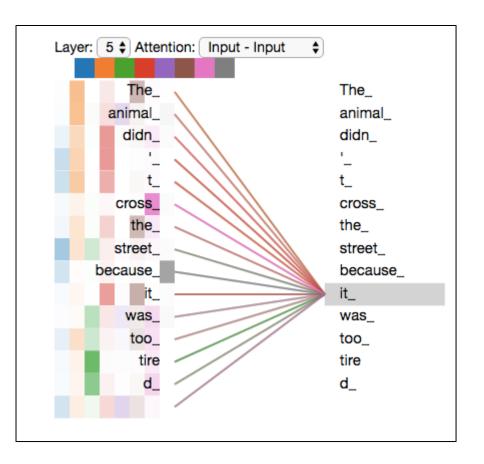
3) The result would be the Z matrix that captures information from all the attention heads. We can send this forward to the FFNN

All self-attention steps

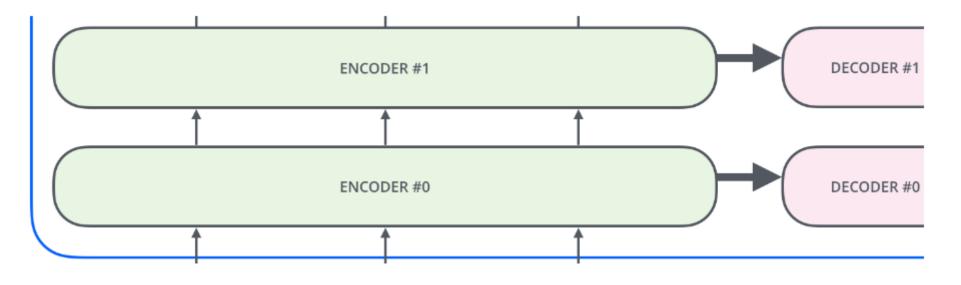
1) This is our 2) We embed 3) Split into 8 heads. 4) Calculate attention 5) Concatenate the resulting Z matrices, input sentence* each word* We multiply X or using the resulting then multiply with weight matrix W^o to R with weight matrices produce the output of the layer Q/K/V matrices W₀Q Х NoK Thinking W₀v Machines Wo W₁Q N₁ĸ * In all encoders other than #0, Ζ W₁v we don't need embedding. We start directly with the output of the encoder right below this one ... R W₇Q **₩**-7K W₇v

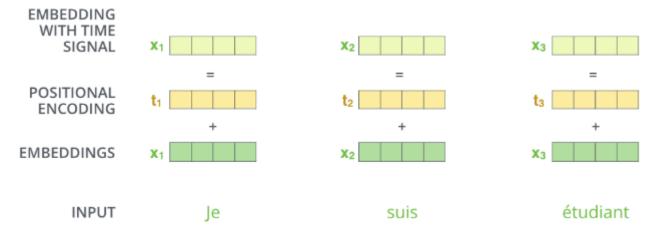
Multi-headed attention



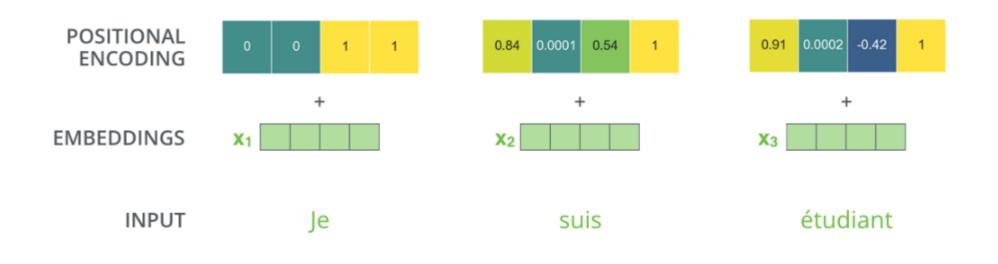


Positional embeddings

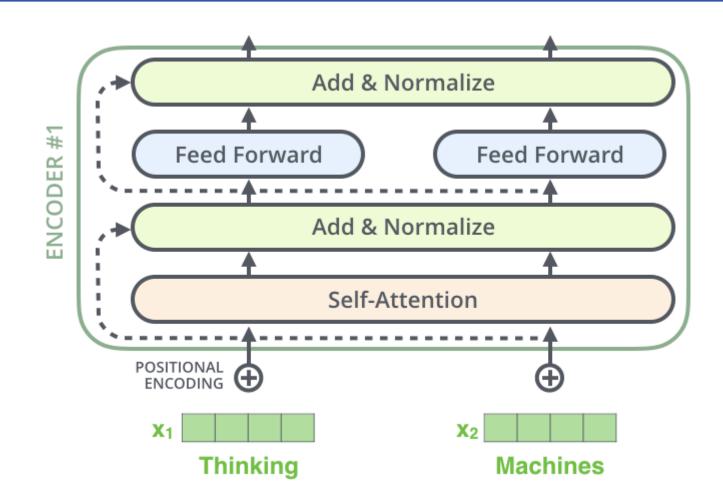




Positional embeddings



Residuals



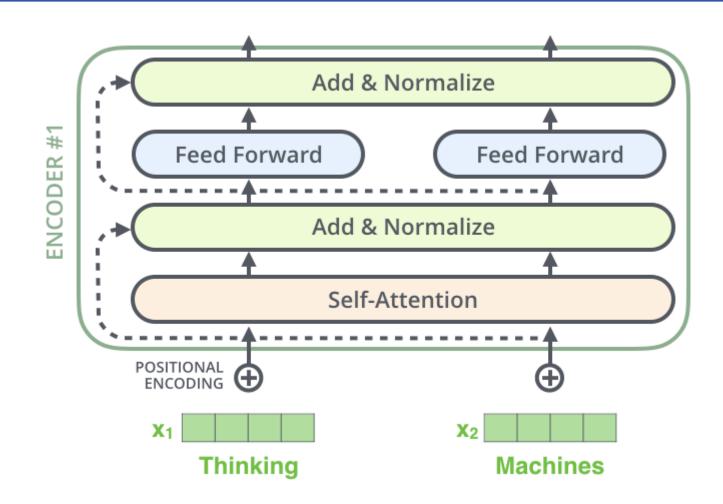
Layer normalization

Layer normalization is a training trick where you take the output from a neural net layer and statistically **normalize** it so that it has a mean value of 0 and a variance of 1

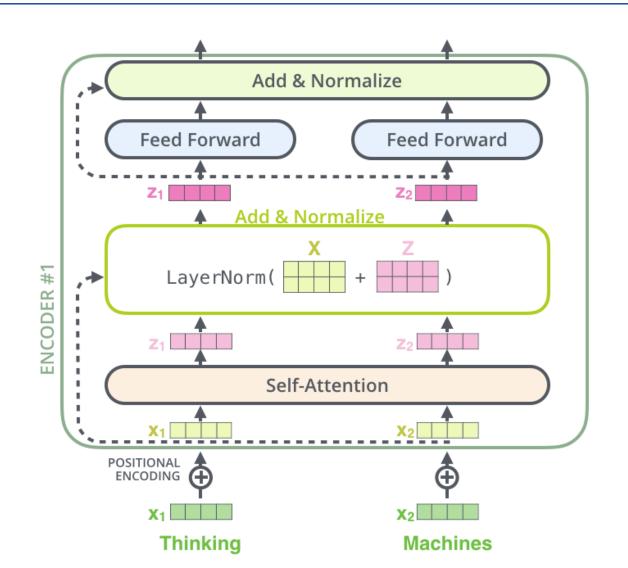
- This turns out to improve training speed and consistency.
- It's kind of just one of those handy tricks that people have discovered to generally improve deep learning, similar to dropout and L2 regularization.

Layer normalization <u>JL Ba</u>, <u>JR Kiros</u>, <u>GE Hinton</u> - arXiv preprint arXiv:1607.06450, 2016 - arxiv.org ..., we transpose batch normalization into layer normalization by computing the mean and variance used for normalization from all of the summed inputs to the neurons in a layer on a ... ☆ Save 𝒴 Cite Cited by 7452 Related articles All 6 versions 𝑀

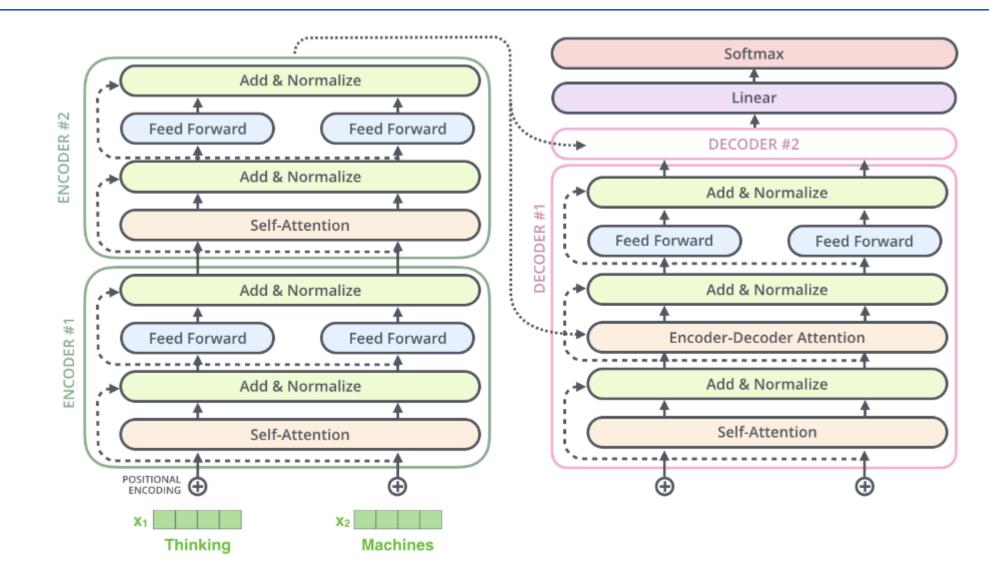
Residuals



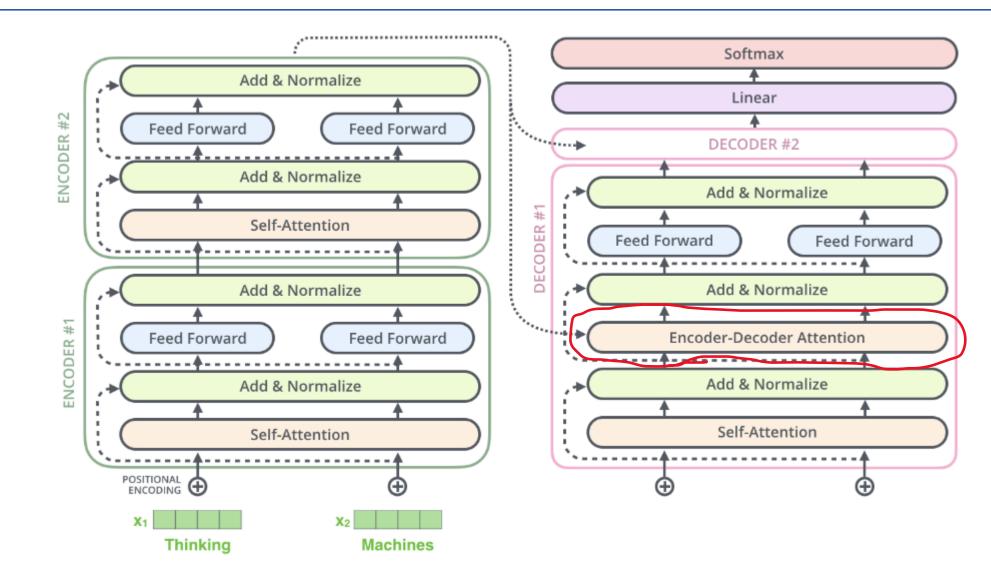
Residuals



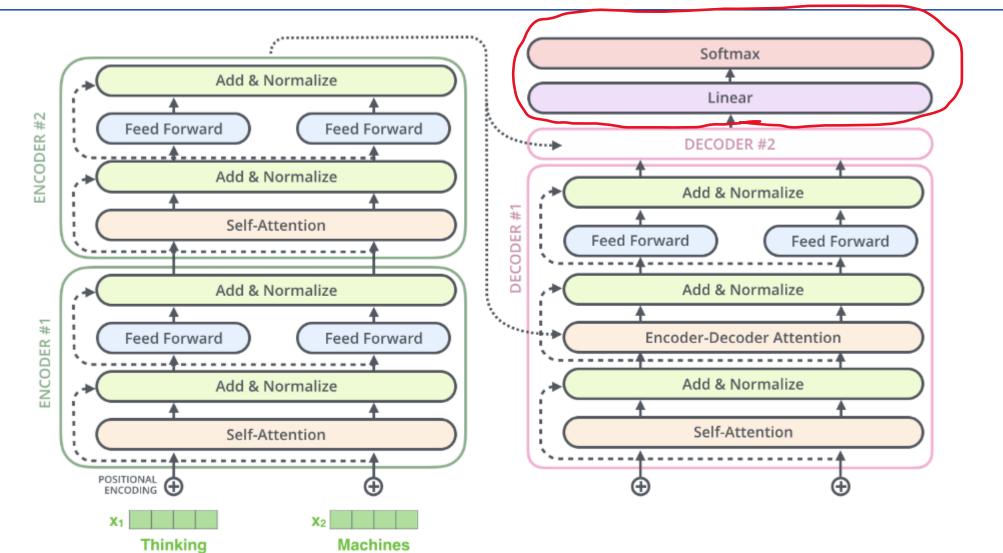
Encoder-decoder



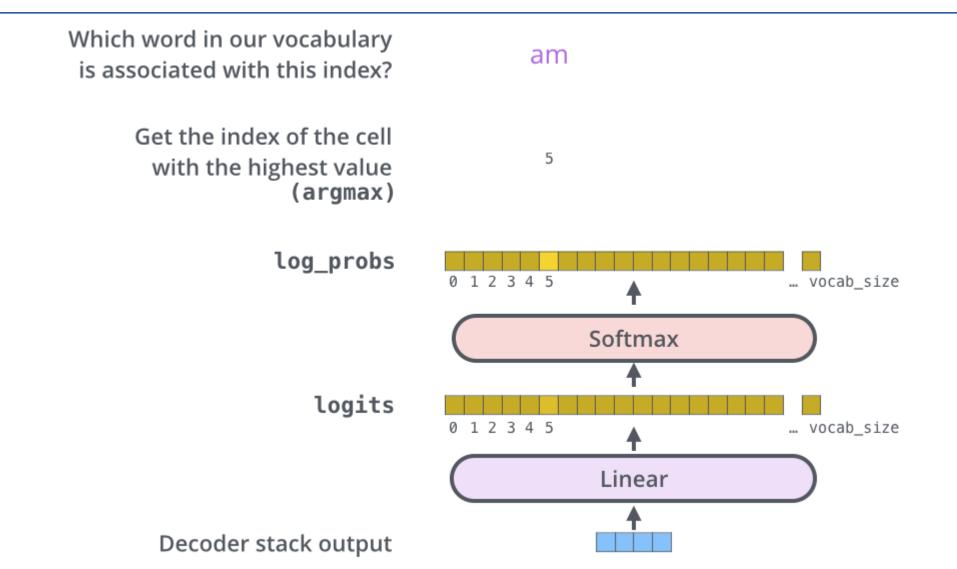
Encoder-decoder



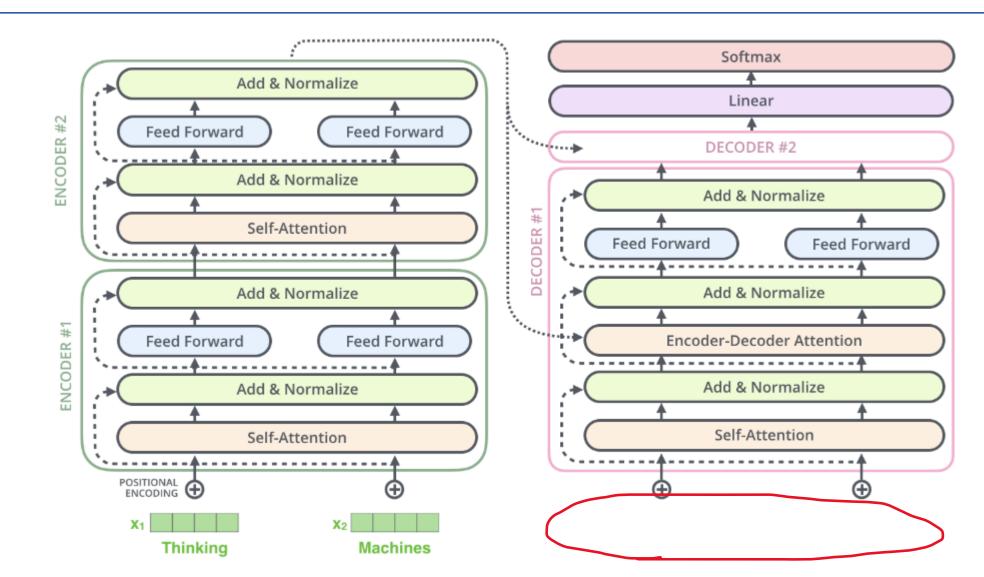
Encoder-decoder



Decoder output layer

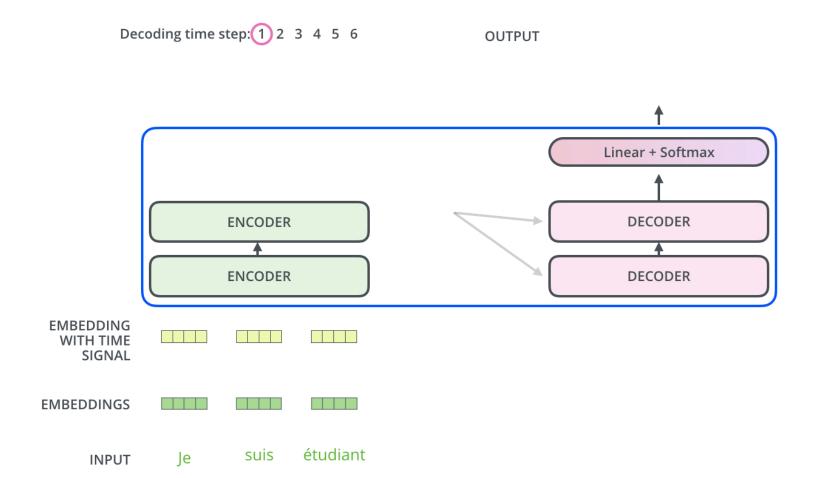


Encoder-decoder

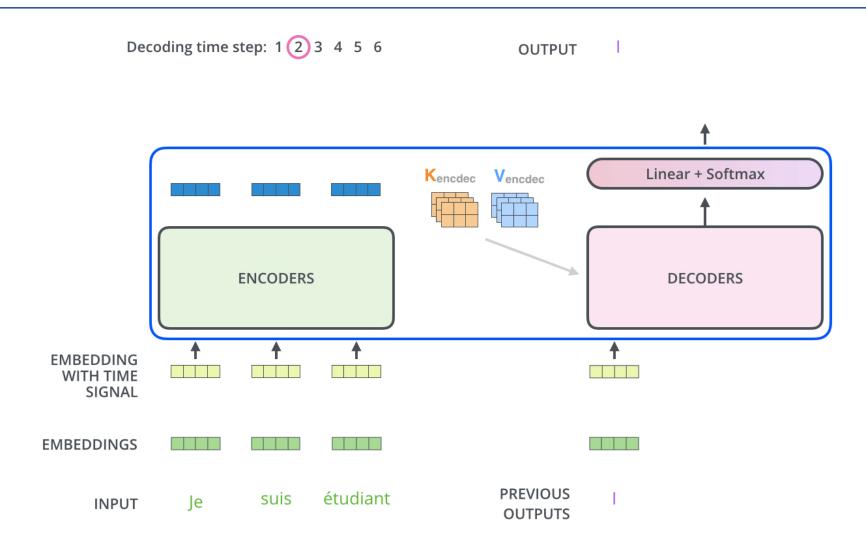


38

Decoder



Decoder



NH

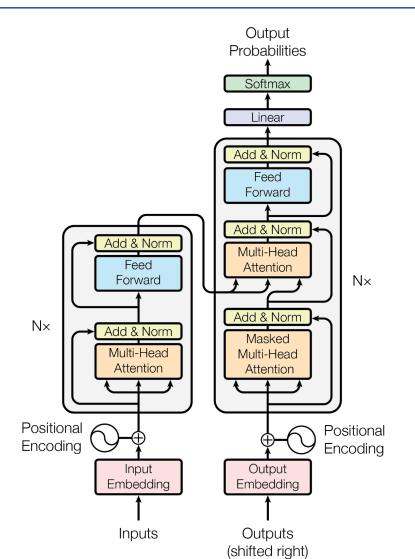
40

Transformer

Many components!

- Self-attention (NxN)
- Multiple self-attention heads per layer
- Multiple self-attention layers
- Encoder + decoder

Worth it?



Reading SST-2

1 display(dev_df)				
	sentence	label		
0	it 's a charming and often affecting journey .	1		
1	unflinchingly bleak and desperate	0		
2	allows us to hope that nolan is poised to emba	1		
3	the acting , costumes , music , cinematography	1		
4	it 's slow very , very slow .	0		
867	has all the depth of a wading pool .	0		
868	a movie with a real anarchic flair .	1		
869	a subject like this should inspire reaction in	0		
870	is an arthritic attempt at directing by ca	0		
871	looking aristocratic , luminous yet careworn i	1		
872 rows × 2 columns				

Installing Transformers

5 !pip install Transformers
ooking in indexes: https://us-python.pkg.dev/colab-wheels/public/simple/
ollecting Transformers
Downloading transformers-4.27.4-py3-none-any.whl (6.8 MB)
6.8/6.8 MB 94.6 MB/s eta 0:00:00
ollecting tokenizers!=0.11.3,<0.14,>=0.11.1
Downloading tokenizers-0.13.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.8 MB)
7.8/7.8 MB 98.2 MB/s eta 0:00:00
equirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.9/dist-packages (from Transformers) (23.0)
equirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.9/dist-packages (from Transformers) (6.0)
equirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.9/dist-packages (from Transformers) (4.65.0)
equirement already satisfied: requests in /usr/local/lib/python3.9/dist-packages (from Transformers) (2.27.1)
equirement already satisfied: filelock in /usr/local/lib/python3.9/dist-packages (from Transformers) (3.10.7)
ollecting huggingface-hub<1.0,>=0.11.0
Downloading huggingface_hub-0.13.4-py3-none-any.whl (200 kB)
200.1/200.1 KB 26.7 MB/s eta 0:00:00
equirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.9/dist-packages (from Transformers) (2022.10.31)
equirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.9/dist-packages (from Transformers) (1.22.4)
equirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.9/dist-packages (from huggingface-hub<1.0,>=0.11.0->Transformer
equirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.9/dist-packages (from requests->Transformers) (3.4)
equirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.9/dist-packages (from requests->Transformers) (2022.12.7)
equirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.9/dist-packages (from requests->Transformers) (1.26.15)
equirement already satisfied: charset-normalizer~=2.0.0 in /usr/local/lib/python3.9/dist-packages (from requests->Transformers) (2.0.12)
nstalling collected packages: tokenizers, huggingface-hub, Transformers
uccessfully installed Transformers-4.27.4 huggingface-hub-0.13.4 tokenizers-0.13.3

<pre>1 from transformers import BertTokenizerFast 2 3 # This command goes out onto the Hugging Face website and downloads th 4 # associated with the pretrained bert-base-uncased model 5 6 # We'll talk later about how this pretraining works, but the long stor 7 # that this thing will do all the preprocessing we need for us. 8 tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')</pre>	
Downloading ()okenizer_config.json: 100%	28.0/28.0 [00:00<00:00, 698B/s]
Downloading ()solve/main/vocab.txt: 100%	232k/232k [00:00<00:00, 550kB/s]

Downloading (...)/main/tokenizer.json: 100%

loading file vocab.txt from cache at /root/.cache/huggingface/hub/models--bert-base-uncased/snapshots/0a6aa9128b6194f4f3c4db429b6cb4891cdb421b/vocab.txt
loading file tokenizer.json from cache at /root/.cache/huggingface/hub/models--bert-base-uncased/snapshots/0a6aa9128b6194f4f3c4db429b6cb4891cdb421b/toke
loading file added_tokens.json from cache at None
loading file special_tokens_map.json from cache at /root/.cache/huggingface/hub/models--bert-base-uncased/snapshots/0a6aa9128b6194f4f3c4db429b6cb4891cdb421b/toke
loading file tokenizer_config.json from cache at /root/.cache/huggingface/hub/models--bert-base-uncased/snapshots/0a6aa9128b6194f4f3c4db429b6cb4891cdb42
Downloading (...)lve/main/config.json: 100%

466k/466k [00:00<00:00, 1.09MB/s]

loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--bert-base-uncased/snapshots/0a6aa9128b6194f4f3c4db429b6cb4891c

1 # These tokenizers are very simple to use 2 tokenized = tokenizer.encode plus('The tokenizer has lots of functionality.') 3 from pprint import pprint 4 pprint(tokenized) 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], 'input_ids': [101, 1996, 19204, 17629, 2038, 7167, 1997, 15380, 1012, 102], 'token type ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]} 1 # By default it returns these things as lists 2 pprint({key:type(value) for key, value in tokenized.items()}) 'attention mask': <class 'list'>, 'input ids': <class 'list'>, 'token type ids': <class 'list'>} 1 # But you can tell it to return PyTorch tensors instead 2 tokenized pt = tokenizer.encode plus('The tokenizer has lots of functionality.', return tensors='pt') 3 from pprint import pprint 4 pprint(tokenized pt) 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]), 'input ids': tensor([[101, 1996, 19204, 17629, 2038, 7167, 1997, 15380, 1012, 102]]), 'token type ids': tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])}

1 # One thing to note is that transformer-based models operate on wordpieces, not words
2 # Also note how it inserts a [CLS] token at the beginning and a [SEP] token at the end
3 print(tokenizer.convert_ids_to_tokens(tokenized['input_ids']))

['[CLS]', 'the', 'token', '##izer', 'has', 'lots', 'of', 'functionality', '.', '[SEP]']


```
1 # If we give it a list of texts, it will return a batch of results (and do padding!)
2 texts = ['This is the first sentence.',
        'This may be the second sentence, I really do not know.',
        'I never learned to count.']
4
6 tokenizeds = tokenizer.batch encode plus(texts, return tensors='pt', padding=True)
7 pprint(tokenizeds)
{'attention mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0],
     [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0]]),
'input_ids': tensor([[ 101, 2023, 2003, 1996, 2034, 6251, 1012, 102,
                                                      0, 0,
                                                               0,
                                                                    0.
        0, 0,
                 0],
     [ 101, 2023, 2089, 2022, 1996, 2117, 6251, 1010, 1045, 2428, 2079, 2025,
      2113, 1012, 102],
     [ 101, 1045, 2196, 4342, 2000, 4175, 1012, 102, 0, 0, 0, 0,
                 0]]),
        0. 0.
```

1 # The default behavior is to pad sequences out to the max sequence length in the batch 2 print(tokenizer.convert_ids_to_tokens(tokenizeds['input_ids'][0]))

['[CLS]', 'this', 'is', 'the', 'first', 'sentence', '.', '[SEP]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]']

Dataset


```
8 class SST2TransformerDataset(Dataset):
    def init (self,
 9
                 labels=None,
10
                 texts=None):
11
12
13
      self.y = torch.tensor(labels,dtype=torch.int64)
      self.texts = texts
14
15
    def len (self):
16
      return self.y.shape[0]
17
18
19
    def __getitem__(self, idx):
      rdict = {
20
       'y': self.y[idx],
21
        'text': self.texts[idx]
22
23
      }
24
      return rdict
1 train dataset = SST2TransformerDataset(train df['label'], train df['sentence'])
 2 dev_dataset = SST2TransformerDataset(dev_df['label'], dev_df['sentence'])
 3
 4 print(train dataset[0])
 5
{'y': tensor(0), 'text': 'hide new secretions from the parental units '}
```

DataLoader

Pretrained transformers

1 from transformers import BertModel

2 # Like the tokenizer, we can just download one of these from Hugging Face

3 bert = BertModel.from_pretrained('bert-base-uncased')

loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--bert-base-uncased/snapshots/0a6aa9128b6194f4f3c4db429b6cb4891c Model config BertConfig {

```
"architectures": [
  "BertForMaskedLM"
],
"attention probs dropout prob": 0.1,
"classifier_dropout": null,
"gradient checkpointing": false,
"hidden act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden size": 768,
"initializer range": 0.02,
"intermediate size": 3072,
"layer norm eps": 1e-12,
"max position embeddings": 512,
"model type": "bert",
"num attention heads": 12,
"num hidden layers": 12,
"pad token id": 0,
"position embedding type": "absolute",
"transformers_version": "4.27.4",
"type_vocab_size": 2,
"use cache": true,
"vocab size": 30522
```

Pretrained Transformers

1 # And then using them is very easy: 2 bert_result = bert(input_ids = first_train_batch['input_ids'], 3 | | | | | | | attention_mask = first_train_batch['attention_mask']) #This is how we tell it where the masking is 4 5 # Like the LSTM returning both the intermediate output values and the final hidden state, 6 # The BERT model returns the last hidden state (for each input), and the final pooler output 7 pprint({key:value.shape for key, value in bert_result.items()})

Transformer-using model

4	<pre>class BertClassifier(pl.LightningModule):</pre>		
5	<pre>definit(self,</pre>		
6	learning_rate:float,		
7	<pre>num_classes:int,</pre>		
8	<pre>freeze_bert:bool=False,</pre>		
9	**kwargs):		
10	<pre>super()init(**kwargs)</pre>		
11			
12	# Like with the LSTM, we'll define a central BERT we're gonna use		
13	# Again, this will download this from Hugging Face in the background		
14	<pre>self.bert = BertModel.from_pretrained('bert-base-uncased')</pre>		
15			
16	# If we want to speed up training, we can freeze the BERT module and train		
17	<pre># just the output layer</pre>		
18	<pre>if freeze_bert:</pre>		
19	<pre>for param in self.bert.parameters():</pre>		
20	param.requires_grad = False		
21			
22	# Then the only other thing we need is an output layer, whose input size will		
23	# be the BERT's output size (768), which can can find as follows:		
24	<pre>self.output_layer = torch.nn.Linear(self.bert.config.hidden_size, num_classes</pre>		
25			
26	<pre>self.learning_rate = learning_rate</pre>		
27	<pre>self.train_accuracy = Accuracy(task='multiclass', num_classes=num_classes)</pre>		
28	<pre>self.val_accuracy = Accuracy(task='multiclass', num_classes=num_classes)</pre>		

Transformer-using model

30	<pre>def forward(self, y:torch.Tensor, input_ids:torch.Tensor, attention_mask:torch.</pre>	Tensor):
31	# And then the forward function is pretty simpleway simpler than with the L	STM
32	<pre>bert_result = self.bert(input_ids=input_ids,</pre>	
33	attention_mask=attention_mask) # this is how we tell	the BERT where the padding is
34	# Typically we just use the pooler output for classification	
35	<pre>cls_output = bert_result['pooler_output']</pre>	
36		
37	<pre>py_logits = self.output_layer(cls_output)</pre>	
38	<pre>py = torch.argmax(py_logits, dim=1)</pre>	
39	<pre>loss = torch.nn.functional.cross_entropy(py_logits, y, reduction='mean')</pre>	
40	return {'py':py,	
41	'loss':loss}	

Transformer-using model

53

```
BertClassifier(
                                                                                            (bert): BertModel(
1 bert_model = BertClassifier(learning_rate=2e-5, #if we were fine-tu
                                                                                              (embeddings): BertEmbeddings(
                                                                                                (word embeddings): Embedding(30522, 768, padding idx=0)
2
                                      num classes=2)
                                                                                                (position embeddings): Embedding(512, 768)
3 print('Model:')
                                                                                                 (token_type_embeddings): Embedding(2, 768)
                                                                                                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise affine=True)
4 print(bert_model)
                                                                                                (dropout): Dropout(p=0.1, inplace=False)
                                                                                              (encoder): BertEncoder(
                                                                                                (laver): ModuleList(
                                                                                                  (0-11): 12 x BertLayer(
                                                                                                    (attention): BertAttention(
                                                                                                      (self): BertSelfAttention(
                                                                                                        (query): Linear(in features=768, out features=768, bias=True)
                                                                                                        (key): Linear(in features=768, out features=768, bias=True)
                                                                                                        (value): Linear(in features=768, out features=768, bias=True)
                                                                                                        (dropout): Dropout(p=0.1, inplace=False)
                                                                                                      (output): BertSelfOutput(
                                                                                                        (dense): Linear(in features=768, out features=768, bias=True)
                                                                                                        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise affine=True)
                                                                                                        (dropout): Dropout(p=0.1, inplace=False)
                                                                                                    (intermediate): BertIntermediate(
                                                                                                      (dense): Linear(in features=768, out features=3072, bias=True)
                                                                                                      (intermediate act fn): GELUActivation()
                                                                                                    (output): BertOutput(
                                                                                                      (dense): Linear(in features=3072, out features=768, bias=True)
                                                                                                      (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                                                                                                      (dropout): Dropout(p=0.1, inplace=False)
                                                                                              (pooler): BertPooler(
                                                                                                (dense): Linear(in features=768, out features=768, bias=True)
                                                                                                (activation): Tanh()
```

Training


```
1 from pytorch_lightning import Trainer
 2 from pytorch_lightning.callbacks.progress import TQDMProgressBar
 3
 4 # And then training is easy with our old friend PyTorch Lightning
 5 bert trainer = Trainer(
      accelerator="auto",
 6
      devices=1 if torch.cuda.is_available() else None,
 7
 8
      max epochs=1,
9
      callbacks=[TQDMProgressBar(refresh_rate=20)],
10
      val_check_interval = 0.2,
11
```

Training

CO

1 bert trainer.fit(model=bert model, train dataloaders=train dataloader, 2 val dataloaders=dev dataloader) 3 INFO:pytorch_lightning.accelerators.cuda:LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0] INFO:pytorch lightning.callbacks.model summary: Type Name Params BertModel 0 bert 109 M 1 | output layer | Linear 1.5 K 2 | train_accuracy | MulticlassAccuracy | 0 3 | val accuracy | MulticlassAccuracy | 0 Trainable params 109 M Non-trainable params 0 Total params 109 M 437.935 Total estimated model params size (MB) Validation accuracy: tensor(0.5000, device='cuda:0') Epoch 0: 100% Validation accuracy: tensor(0.9094, device='cuda:0') Validation accuracy: tensor(0.9071, device='cuda:0') Validation accuracy: tensor(0.9220, device='cuda:0') Validation accuracy: tensor(0.9174, device='cuda:0') Validation accuracy: tensor(0.9209, device='cuda:0') INFO:pytorch lightning.utilities.rank zero: Trainer.fit stopped: `max epochs=1` reached. Training accuracy: tensor(0.9238, device='cuda:0')

7175/7175 [10:42<00:00, 11.16it/s, loss=0.141, v_num=4]