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Last lecture
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RNNs

• One-to-one

• Many-to-one

• Many-to-many

LSTMS

Increasing RNN capacity

• Depth

• Bidirectionality

Dropout



LSTMs: NLP Swiss army knife

LSTMs are exciting for us because they are the Swiss army knife of NLP models. 

• Sequence classification

• Sequence tagging

• Language modeling

• Text-to-text (e.g. translation)
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Sequence tagging

Basic idea: Given a corpus of text where each word has a label, learn to predict word 
labels for unseen texts

• Part-of-speech tagging

• Named entity recognition

• “In his speech to the UN today, George Bush addressed the rising problems of…”

• Explanations

• “You are a real piece of garbage human being.” → Predicted toxic
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Sequence tagging

Context sensitive.

• “You are a real jerk!”

• “I am really craving some Jamaican jerk chicken right now.”
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Loading GloVe vectors with Gensim
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Loading GloVe vectors with Gensim
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Twitter POS tagging dataset

Named Entity Recognition in Tweets: An Experimental Study (Ritter et al., 2011)

https://raw.githubusercontent.com/aritter/twitter_nlp/master/data/annotated/pos.txt
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Reading and preprocessing POS data
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Reading and preprocessing POS data
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Reading and preprocessing POS data

49 possible POS tags in this particular dataset
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Reading and preprocessing POS data
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Reading and preprocessing POS data
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Training a LSTM POS tagger—Dataset
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Training a LSTM POS tagger—DataLoader

23



Training a LSTM POS tagger—DataLoader
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Training a LSTM POS tagger—Model
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Training a LSTM POS tagger—Model
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Training a LSTM POS tagger—Model
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Training a LSTM POS tagger—Trainer

31



Training a LSTM POS tagger—Trainer
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Concluding thoughts

Sequence tagging

• POS tagging

LSTMs as a NLP Swiss army knife

Domain-specific word embeddings

Masked loss
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