
Recurrent Neural Networks
CS 780/880 Natural Language Processing Lecture 15

Samuel Carton, University of New Hampshire

Last lecture

2

Word vector models

• Word2Vec

• CBOW

• Skip-gram

• GloVe

Word vectors in classification

• Padding

• Collation

• Centroids

Another mistake!

3

Word vectors & composition

Word vectors are pretty cool

• Semantic similarity

• Analogies

But ultimately, NNs need fixed-length input, and it’s not obvious how to compose a
variable-length sequence of word vectors into a single document vector

Just taking the centroid netted us some disappointing results

4

Recurrent Neural Nets (RNNs)

Basic idea: the model runs over one word at a time, producing one or more hidden state
vectors (aka activation vector) which it passes to itself when it looks at the next word.

Analogous to humans: read one word at a time and remember whatever you need to
remember from word to word, to understand the meaning of the whole text.

Diagrams from https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

• Very nice cheat-sheet for RNNs 5

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

Recurrent Neural Nets (RNNs)

More generally:

So 𝑎𝑡 is what gets remembered from
word to word, and ො𝑦𝑡 is what gets
outputted from word to word.

And models learn to remember what
they need to remember, via objective
functions on ො𝑦𝑡

6

𝑎𝑡 = 𝑓(𝑎𝑡−1, 𝑥𝑡)

ො𝑦𝑡 = 𝑔(𝑎𝑡−1 𝑜𝑟 𝑎𝑡, 𝑥𝑡)

(a tad over-specific, IMHO)

Example: “dumb” insult detector

Say you are trying to train an RNN to read a whole text and predict “yes” if the text has the
word “dumb” (or a synonym like “moronic”) in it, and “no” if not

Then, 𝑎𝑡 can just be a 1 or a 0, indicating “has one of these words been

found before?”

And 𝑎𝑡 = 𝑓(𝑎𝑡−1, 𝑥𝑡) can be defined as 𝑎𝑡−1 = 1 𝑜𝑟 𝑥𝑡 = "dumb"

And then finally ො𝑦𝑡 could just be equal to 𝑎𝑡, and we would put an objective on just the
final ො𝑦𝑡 (ො𝑦𝑁), encouraging it to be 1 if there is a “dumb” somewhere in the text.

Challenge: how could we detect whether a given 𝑥𝑡 = “dumb” or some similar word?

7

𝑎𝑡 = 𝑓(𝑎𝑡−1, 𝑥𝑡)

ො𝑦𝑡 = 𝑔(𝑎𝑡−1 𝑜𝑟 𝑎𝑡, 𝑥𝑡)

Example: “dumb” insult detector

Say you are trying to train an RNN to read a whole text and predict “yes” if the text has the
word “dumb” (or a synonym like “moronic”) in it, and “no” if not

Then, 𝑎𝑡 can just be a 1 or a 0, indicating “has one of these words been

found before?”

And 𝑎𝑡 = 𝑓(𝑎𝑡−1, 𝑥𝑡) can be defined as 𝑎𝑡−1 = 1 𝑜𝑟 𝑥𝑡 = "dumb"

And then finally ො𝑦𝑡 could just be equal to 𝑎𝑡, and we would put an objective on just the
final ො𝑦𝑡 (ො𝑦𝑁), encouraging it to be 1 if there is a “dumb” somewhere in the text.

Challenge: how could we detect whether a given 𝑥𝑡 = “dumb” or some similar word?

• ¡Word vectors!
8

𝑎𝑡 = 𝑓(𝑎𝑡−1, 𝑥𝑡)

ො𝑦𝑡 = 𝑔(𝑎𝑡−1 𝑜𝑟 𝑎𝑡, 𝑥𝑡)

Different RNN types

Many-to-one

• Most text classification is this

9

Different RNN types

One-to-one

• A conventional (feedworward) neural net could be described as this

10

Different RNN types

Many-to-many

• POS tagging would be an example of this

11

Different RNN types

Many-to-many (𝑻𝒙 ≠ 𝑻𝒚)

• Variant of many-to-many where there are inputs and outputs on different cells

• Machine translation is the main example of this

12

Vanishing gradients

RNNs are like a feedforward neural net being applied horizontally across each word of the
text, rather than vertically across a flat representation of the text

• Such as the centroid of the word vectors in the text, which is what we tried last lecture

• But same parameters at each layer, rather than different weight tensor

Like FFNNs, RNNs have problems with vanishing gradients

If you apply an objective only to ො𝑦 at the end, the gradients will have a
tough time training the cells toward the beginning

Called catastrophic forgetting

• Like losing focus on a sentence before
you’re done reading it

13

Long Short-Term Memory (LSTM)

14

https://en.wikipedia.org/wiki/Long_short-term_memory

Long Short-Term Memory (LSTM)

15

https://en.wikipedia.org/wiki/Long_short-term_memory

Long Short-Term Memory (LSTM)

Seem arbitrary? It kind of is.

Valaee et al. (2017) shows that different kinds of RNNs (GRUs, etc) have similar
performance

• https://arxiv.org/pdf/1801.01078.pdf

So the exact internal equations aren’t that important, more the idea of a persistent
memory vector (or vectors) that can be added to or subtracted from based on new 𝑥𝑡’s, in
a way that can be learned from the objective function.

16

https://arxiv.org/pdf/1801.01078.pdf

Loading GloVe vectors with Gensim

17

Loading GloVe vectors with Gensim

18

Loading GloVe vectors with Gensim

19

Loading GloVe vectors with Gensim

20

Loading GloVe vectors with Gensim

21

Reading and preprocessing SST-2 dataset

22

Reading and preprocessing SST-2 dataset

23

Dataset and DataLoader

24

Basic LSTM classification model

25

Basic LSTM classification model

26

Basic LSTM classification model

27

28

Deep RNNs

Basic idea: Have multiple RNNs in a “stack”,
with the bottom one running over the text, but
the upper ones running over the output from the
lower ones

Adds more learning capacity to the model, just
like feedforward nets versus logistic regression

29

Bidirectional RNNs

Basic idea: run the model separately both
forward and backward on the text, and then
concatenate the final vectors from both
passes

Fights catastrophic forgetting by having a
gradient that gets applied at both the
beginning and end of the text.

30

Dropout

Basic idea: with some percentage chance, randomly zero intermediate values within the
model during training

Another form of regularization, like L1 or L2 regularization

Discourages overfitting by discouraging the model from relying too much on individual
parameter values (which may be dropped).

31

Multilayer BiLSTM classification model

32

Multilayer BiLSTM classification model

33

Multilayer BiLSTM classification model

34

Multilayer BiLSTM classification model

35

Concluding thoughts

RNNs

• One-to-one

• Many-to-one

• Many-to-many

LSTMS

Increasing RNN capacity

• Depth

• Bidirectionality

Dropout

36

	Slide 1: Recurrent Neural Networks
	Slide 2: Last lecture
	Slide 3: Another mistake!
	Slide 4: Word vectors & composition
	Slide 5: Recurrent Neural Nets (RNNs)
	Slide 6: Recurrent Neural Nets (RNNs)
	Slide 7: Example: “dumb” insult detector
	Slide 8: Example: “dumb” insult detector
	Slide 9: Different RNN types
	Slide 10: Different RNN types
	Slide 11: Different RNN types
	Slide 12: Different RNN types
	Slide 13: Vanishing gradients
	Slide 14: Long Short-Term Memory (LSTM)
	Slide 15: Long Short-Term Memory (LSTM)
	Slide 16: Long Short-Term Memory (LSTM)
	Slide 17: Loading GloVe vectors with Gensim
	Slide 18: Loading GloVe vectors with Gensim
	Slide 19: Loading GloVe vectors with Gensim
	Slide 20: Loading GloVe vectors with Gensim
	Slide 21: Loading GloVe vectors with Gensim
	Slide 22: Reading and preprocessing SST-2 dataset
	Slide 23: Reading and preprocessing SST-2 dataset
	Slide 24: Dataset and DataLoader
	Slide 25: Basic LSTM classification model
	Slide 26: Basic LSTM classification model
	Slide 27: Basic LSTM classification model
	Slide 28
	Slide 29: Deep RNNs
	Slide 30: Bidirectional RNNs
	Slide 31: Dropout
	Slide 32: Multilayer BiLSTM classification model
	Slide 33: Multilayer BiLSTM classification model
	Slide 34: Multilayer BiLSTM classification model
	Slide 35: Multilayer BiLSTM classification model
	Slide 36: Concluding thoughts

