
Word Vectors
CS 780/880 Natural Language Processing Lecture 14

Samuel Carton, University of New Hampshire

Last lecture

2

Feedforward neural nets

Backpropagation

GPU operations on tensors

Training on GPU

Pytorch Lightning

• LightningModule

• Trainer

Data sparsity

A big problem with everything we’ve done so far is that our data is sparse and the models
always learn from scratch

• e.g. learning that “idiot” → toxicity doesn’t learn that “moron” → toxicity

• e.g. learning that “wonderful” → positive doesn’t learn that “great” → positive

This is limiting. It means that models can only learn from what’s in front of them and can’t
leverage basic knowledge of the language.

Also, big sparse count/TFIDF matrices are a pain to work with, computationally

How to fix?

3

Distributional hypothesis

Basic idea: in a given corpus of text, similar words tend to occur in similar contexts

Examples:

“You are a gigantic [moron|idiot|dumb-dumb].”

“That was a really [moronic|idiotic|dumb] thing to do.”

“It was a [wonderful|great|stupendous] movie.”

“The casting was just [wonderful|great|stupendous].”

How to leverage?

4

Word vector models

Basic idea: generate a dense vector representation of a word that is predictive of the
contexts it is likely to occur in.

• Then, similar words will have similar vectors

Basic workflow:

1. Train word vectors on big unlabeled corpus

2. Save as big mapping of word → vector

3. Use these pretrained vectors as starting point for specific tasks

• Classification

• Language modeling

• Translation

• etc.

5

Word2Vec

Mikolov et al. (2013)

Basic idea: Train a feed-forward neural network to take unigram representation of word
(i.e. the size of the vocabulary), squish it down to small dimension (e.g. 50), then predict
unigram representation of co-occurring words

6

Word2Vec

“You are a gigantic [moron|idiot|dumb-dumb].”

7

Word2Vec

Basic algorithm:

1. Take unlabeled corpus, e.g. all of Wikipedia

2. Divide it into a series of (word, context) pairs

3. Choose an embedding size (50, 100, 200, 300, etc.)

4. Train a 2-layer feedforward model with two layers:

• Encoder: vocab size × embedding size

• Decoder: embedding size × vocab size

5. Use gradient descent to train model to encode words, then decode to predict context

• Use cross entropy for loss function

6. When you are done training:

• Encoder should map similar words to similar intermediate representations

• Run encoder over entire vocabulary to get a dense vector for each word, then
save for later

• Throw away decoder 8

Word2Vec: two variants

There are actually two variants of Word2Vec:

• Continuous bag-of-words (CBOW): Takes in context, predicts word

• Faster to train, better for frequent words, I’m told

• Skip-gram: Takes in word, predicts context

• Better for rare words, apparently

9
https://machinelearninginterview.com/topics/natural-language-processing/what-is-the-

difference-between-word2vec-and-glove

How to choose?

GloVe embeddings

For pretrained embedding vectors, use GloVe instead:

• Pennington et al. (2014), https://nlp.stanford.edu/projects/glove/

Trained by doing matrix factorization of giant N × N word-co-occurrence matrix

10https://machinelearninginterview.com/topics/natural-language-processing/what-is-the-

difference-between-word2vec-and-glove

https://nlp.stanford.edu/projects/glove/

Word vectors capture word similarity

In both GloVe and Word2Vec, similar words will end up with vectors that are close in
vector space

11

https://nlp.stanford.edu/projects/glove/

Word vectors capture analogy

12

https://nlp.stanford.edu/projects/glove/

Gender Word senses

Reading GloVe embeddings

13

Reading GloVe embeddings

14

Properties of GloVe vectors

15

Properties of GloVe vectors

16

Properties of GloVe vectors

17

Properties of GloVe vectors

18

Reading and processing SST-2 dataset

19

Adding vectors for unknown and padding
tokens

20

Adding vectors for unknown and padding
tokens

21

Dataset

22

DataLoader

23

DataLoader

24

Model

25

Model

26

Model

27

Model

28

Trainer

29

Trainer

30

Concluding thoughts

Word vector models

• Word2Vec

• CBOW

• Skip-gram

• GloVe

Word vectors in classification

• Padding

• Collation

• Centroids

31

	Slide 1: Word Vectors
	Slide 2: Last lecture
	Slide 3: Data sparsity
	Slide 4: Distributional hypothesis
	Slide 5: Word vector models
	Slide 6: Word2Vec
	Slide 7: Word2Vec
	Slide 8: Word2Vec
	Slide 9: Word2Vec: two variants
	Slide 10: GloVe embeddings
	Slide 11: Word vectors capture word similarity
	Slide 12: Word vectors capture analogy
	Slide 13: Reading GloVe embeddings
	Slide 14: Reading GloVe embeddings
	Slide 15: Properties of GloVe vectors
	Slide 16: Properties of GloVe vectors
	Slide 17: Properties of GloVe vectors
	Slide 18: Properties of GloVe vectors
	Slide 19: Reading and processing SST-2 dataset
	Slide 20: Adding vectors for unknown and padding tokens
	Slide 21: Adding vectors for unknown and padding tokens
	Slide 22: Dataset
	Slide 23: DataLoader
	Slide 24: DataLoader
	Slide 25: Model
	Slide 26: Model
	Slide 27: Model
	Slide 28: Model
	Slide 29: Trainer
	Slide 30: Trainer
	Slide 31: Concluding thoughts

