Neural Net Training with PyTorch

CS 780/880 Natural Language Processing Lecture 12

Samuel Carton, University of New Hampshire




Last lecture

Linear regression

Learn Wx + b from data
Predict continuous values
Optimize mean squared error

Logistic regression

Learn o(Wx + b) from data
Predict (closeto) O or 1
Optimize cross-entropy

Key concepts:

Loss function
* |.e.objective function

Gradient of loss with respect to
parameters

Gradient descent
Activation function



PyTorch

PyTorch is a deep learning library

* Define the structure of a neural net

* Use gradient descent to train it

* Implementations of common structural elements
Created and maintained by Meta

Competes primarily with TensorFlow (Google)

Fairly dominant in research right now



Tensors

Dimensions of Tensor

A tensor is an N-dimensional array of values ] Z
e e.g.ascalar (0D), vector (1D), or matrix (2D)

Any neural net is basically just a bunch of tensor 1d-Tensor 2d - Tensor 3d Tensor
operations

GPUs happen to be good at doing tensor operations
quickly
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https://www.javatpoint.com/pytorch-tensors



Tensors - Basic operations and dimensionality

PyTorch Tensors are
functionally almost identical
to Numpy arrays

Basic operations

Dimensionality
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1 # Scalar (@-dimensional tensor)
2 58 = torch.Tensor(1)
3 =8

tensor([1.8283=+12])

1 # Vector (1-dimensional tensor)
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tensor([1l., 2., 3.])

1 # Matrix (2-dimensional tensor)
2
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Tensors - Convenient functionality

1 # It's easy to convert back and forth between numpy arrays and tensors
2

3 print('Conversion from PyTorch to Numpy')

4 np m = md.numpy()

5 display({np_m)

6

7 print({ \nConverstion from Numpy to PyTorch')

8t np m = torch.Tensor(np_m)

9 display(t _np m)

Conversion from PyTorch to Numpy

array([[1., 2.7,
[3., 4.]], dtype=float32)

Converstion from Numpy to PyTorch
tensor([[1., 2.],

[2., 4.1])




Gradient Descent

Basic idea: Calculate the loss over the whole training
set, do a step along the gradient, then recalculate the
loss and so on

https://www.analyticsvidhya.com/blog/2022/07/gradient-descent-and-its-types/




Mini-batch gradient descent

Batch Gradient Descent Mini-Batch Gradient Descent

For big datasets/models, we can’t fit all training
gradients in memory.

So we do our steps on batches of the data, one
at a time

Stochastic Gradient Descent

When the batch size is 1, it’s called stochastic
gradient descent

Batch size is a hugely important
hyperparameter in neural net training,.

* Bigger usually better, but requires a bigger GPU
* Why Nvidia A100s are like $15k



Reading and preprocessing SST-2 dataset

sentence label preprocessed

0 it 's a charming and often affecting journey . 1 it 's a charm and often affect journey .
1 unflinchingly bleak and desperate 0 unflinchingli bleak and desper
2  allows us to hope that nolan is poised to emba... 1 allow us to hope that nolan is pois to embark ...
o the acting . costumes , music , cinematography... 1 the act, costum . music , cinematographi and ...
4 it 's slow — very , very slow . 0 it's slow -- veri , veri slow .
B8e7 has all the depth of a wading pool . 1] ha all the depth of a wade pool .
868 a movie with a real anarchic flair . 1 a movi with a real anarch flair .
869 a subject like this should inspire reaction in... 0 a subject like thi should inspir reaction in i...
870 ... 1= an arthritic attempt at directing by ca... O ... Is an arthrit attempt at direct by calli k...
871 looking aristocratic , luminous yet carewom ... 1 look aristocrat , lumin yet careworn in jane h...

872 rows x 3 columns




Reading and preprocessing SST-2 dataset

1 from sklearn.feature extraction.text import CountVectorizer

1 vectorizer = CountVectorizer()
2 train X = vectorizer.fit transform{train_df['preprocessed’'])
3 display(train_X)

<67349x18186 sparse matrix of type '<class "numpy.intéd’:’
with 535539 stored elements in Compressed Sparse Row format>

1 dev X = vectorizer.transform(dev_df['preprocessed'])
2 display{dev X)

<872x18186 sparse matrix of type '<class 'numpy.inted’>’
with 12932 stored elements in Compressed Sparse Row format:
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PyTorch Datasets

1 class 55T2Dataset(Dataset):

2
3
4
)
3]
7
a
2]

1@
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16
17
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28
21
22
23
24
25

def init (self,
labels=None,
sparse_count _matrix=Nons):

self.y

torch.tensor(labels,dtype=torch.int64)

self.X = sparse count _matrix #Pytorch doesn't play especially well with
# Sparse matrices, but we won't store the whole thing as a dense matrix

det _ len_ (self):
return self.y.shape[@]

# The key method in a Dataset is  getitem , which the Dataloader will
# use to create batches
det _getitem__ (self, idx):
rdict = {
"vw'o oself.y[idx],

# Just densify individual rows of the sparse matrix as needed

# A little awkward to convert it to a numpy array, but we want these
# to be 1D vectors so that the Dataloader will stack them correctly
"¥': torch.Tensor{np.asarray(self.X[idx].todense(}))[]),

¥

return rdict

1 train_dataset = S5T2Dataset(train_df[ "label’], train X)
2 print(train_dataset[8])
3 print(train_dataset[@]['X'].shape)

{'y"': tensor(@), 'X': tensor([B., ©., 8., ..., @., @., 8.])}
torch.Size([18186])

1 dev_dataset = 55T2Dataset(dev_df["label’'], dev X)
2 print(dev_dataset[8])

I'y": tensor(1), 'X': tensor([B., ., ., ..., ©., &., 8.])}

¢
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PyTorch DatalLoaders

batch size = 16

1
2
3 # A Dataloader is a wrapper around a Dataset that makes it easy to iterate over

4 # batches of the dataset

5 train_dataloader = torch.utils.data.Dataloader(train_dataset, batch_size=batch size, shuffle=True)
6

7

E

9

# When we grab the first item in the iterator, it's a dictionary, but now each item
# is a batch of values from our dataset that has been stacked into a tensor, instead of a single value
first train _batch = next(iter(train_dataloader))

18

11 print{'First training batch:")

12 print{first_train_batch)

13

14 print({'Batch item shapes:")

15 print({key:value.shape for key, value in first train batch.items()})

First training batch:

{'y": tensor([®, 1, &8, 8, &, 1, 1, &, 1, 1, 1, &, 1, 1, 1, 8]y, 'X': tensor([[©., ©., B., ..., B., 8., 8.],
[@., 8., 8., ..., ©., 8., @.],
[@., 8., 8., ..., ©., 8., 8.],
[@., 8., ©., ..., ©., 8., 8.],
[@., 8., ©., ..., ©., 8., @.],
[@., 8., ©., ..., 0., 8., 2.1}

Batch item shapes:
{'y": torch.Size([16]), 'X': torch.Size([16, 1@1@6])}
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PyTorch models

PyTorch models always extend torch.nn.Module

They always have:
 An__init__() method which defines the structure of the model

» Aforward() method which takes in the input and spits out the model output

As long as the output of forward() is composed of differentiable tensor-on-tensor
operations, then PyTorch can use automatic differentiation to figure out
Aparametersoutput, and then subsequently do gradient descent.

13



Our model

1 class BinarylogisticRegression(torch.nn.Module):

2| def init (self, vocab size:int):

3 super{BinarylogisticRegression, self)._ _init_ ()

4 self.Wb = torch.nn.Linear(vocab size, 1, bias=True)
5 self.activation function = torch.nn.Sigmoid()

6

7 def forward(self, X:torch.Tensor, y:torch.Tensor):

8 py_logits = self . Wb(X)

g py_logits = py_logits.squeeze()

18 py_probs = self.activation function{py logits)

11 py = torch.round(py probs).int()

12 loss = torch.nn.functional.binary cross_entropy(py_probs, y.float(), reduction ='mean")
13 return {'py logits':py logits,

14 'py_probs':py probs,

15 Py’ IpY,

16 'loss':loss}

1 # We can instantiate the model

2 vocab_size = train X.shape[1l] # We need to know this in order to set up the model
3 gur_model = BinaryLogisticRegression(vocab size=vocab size)

4 # Displaying the model will show its layers

5 display(our_model)

BinarylLogisticRegression(
(Wb): Linear(in_features=18185, out_features=1, bias=True)
(activation function): Sigmoid()

)

¢
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Our model

8 from pprint import pprint

9 with torch.no grad():

18 first _train_output = our _model(**first_train_batch)

11

12 print{"First training output:")

13 pprint{first train_ output)

14

15 print{"Output item shapes:")}

16 pprint{{key:value.shape for key, value in first train output.items{)})

First training output:
{'loss": tensor(8.6944),
'py": tensor([l, &, ®, 1, ®, 1, &, 1, 1, 1, 8, 1, 1, 1, 1, 1], dtype=torch.int32),
'py_logits': tensor([ ©.8178, -6.8882, -8.8112, ©.8167, -8.823%, ©.8316, -8.08598, 0.8228,
8.8030, ©.0079, -9.8457, ©.8296, ©.8232, ©.8018, 6.0024, 06.e818]),
'py_probs': tensor([8.5045, ©.4999, ©.4972, 8.5842, ©.4948, 8.5879, ©.4977, 9.5855, 8.5018,
8.5828, ©9.4883, ©.5874, 8.5858, ©.5684, @.5886, 8.5885])7}
Output item shapes:
{'loss": torch.5ize([]),
'py': torch.S5ize([16]),
"py_logits': torch.S5ize([16]),
"py_probs': torch.5ize([16])}

¢
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PyTorch training loop

Basic pseudocode:
For each epoch:
For each training batch:
Zero the accumulated grads
Run model on training batch
Calculate loss
Perform gradient descent on step

(optional)
For each validation batch:

Run model on validation batch
Report overall validation accuracy

16



Training loop

Preliminary stuff

1 learning rate = 8.81

2

3 # We initialize an Adam optimizer with our chosen lr. There are other params
4 # we can set for Adam too, but I am ignoring them for now.

5 optimizer = torch.optim.Adam{our model.parameters()}, lr=learning rate)

1 # An epoch is one complete pass over all the training batches
2 num_epochs = 2

17



Training loop

I R R - T Ry
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1 for epoch_num in range(num_epochs):

print(f \nEpoch {epoch_num}")

train_losses = []

train pys = []

train ys = []

for step _num, train batch in enumerate(train_dataloader):
optimizer.zero grad()
train_output = our_model(**train_batch)
train_loss = train_output['loss’']
if step_num >8 and step_num % 588 == @: print(f'\tStep {step_num} mean training loss: {np.mean(train_losses[-588:]):.3f}")
train losses.append(train_loss.detach().numpy())
train_ys.append(train_batch['y"'].detach().numpy())
train_pys.append(train_output[ ' 'py'].detach{).numpy())
train_ loss.backward()
optimizer.step()

print{f Epoch mean train loss: {np.mean(train_ losses)}:.3f}")
print{f Epoch train accuracy:{accuracy score{np.concatenate(train_ys), np.concatenate(train pys)):.3f}")

dev_pys = []
dev ys = []
for dev_batch in dev dataloader:
with torch.no grad():
dev_output = our model{**dev_batch)
dev_ys.append{dev_batch['y"'].detach().numpy{))
dev_pys.append(dev_output| 'py'].detach().numpy()}

print{f Epoch dev accuracy:{accuracy score(np.concatenate(dev_ys), np.concatenate(dev pys)):.3f}")

¢

18



Training loop

Epoch 8

Step 5@ mean training loss: 8.56@

Step 1888 mean
Step 1588 mean
Step 2888 mean
S5tep 2588 mean
Step 38688 mean
Step 3588 mean
Step 48683 mean
Epoch mean train loss:
Epoch train accuracy:8.

training
training
training
training
training
training
training
8.374
849

Epoch dev accuracy:8.812

Epoch 1

loss:
loss:
loss:
loss:
loss:
loss:
loss:

Step 5@ mean training loss:

Step 1888 mean
Step 1588 mean
Step 2883 mean
Step 2588 mean
Step 3888 mean
Step 2588 mean
Step 4888 mean
Epoch mean train loss:
Epoch train accuracy:e.

training
training
training
training
training
training
training
8.258
0@2

Epoch dev accuracy:8.814

loss:
loss:
loss:
loss:
loss:
loss:
loss:

e v w e e R v I v

438
L3381
.362
L2344
.326
. 315
. 3687

8.255

mm oD oSS D ®E

.261
.256
.256
.264
. 266
.251
. 263
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L1/L2 Regularization

Basic idea: discourage any one feature from having too much of an impact on the model
output by punishing the sum (L1) or squared-sum (L2) of the model parameters

Standard way to discourage overfitting

1 # We can see here that "kangaroo” totally sabotaged the prediction here
2 explain binary linear model prediction('the movie was wonderful and had a kangarco in it.’,

Done automatically by . (e
oy o il : t+ -
most scikit-learn models vectorizer)

Prediction: -8.698151882283332
Word coefficients:
Word: the - Coef: -8.885
Word: movi - Coef: ©.882
Word: wa - Coef: -8.879
Word: wonder - Coef: 6.134
Word: and - Coef: ©.824

Word: had - Coef: -8.886
Word: kangaroo - Coef @
Word: in - Coef: -8.815

Word: it - Coef: ©.8@3
Model intercept: ©.60621882139311285

20



Regularized model

1 class RegularizedBinarylLogisticRegression(torch.nn.Module):

2| def init (self,

3 vocab size:int,

4 12 penalty weight=.861):

5 super({RegularizedBinarylogisticRegression, self).__init_ ()
6 self.Wb = torch.nn.Linear(vocab size, 1, bias=True)

7 self.activation function = torch.nn.5igmoid(}

8 self.12 penalty weight = 12 penalty weight

o
18 def forward(self, X:torch.Tensor, y:torch.Tensor):
11 py_logits = self.Wb(X)
12 py_logits = py logits.squeeze()
13 py_probs = self.activation_function(py_logits)
14 py = torch.round{py probs).int()
15 py_loss = torch.nn.functional.binary cross entropy(py_probs, y.float(), reduction ="mean")
16
17 12 loss = self.12 penalty weight * torch.mean(self.Wb.weight**2)
18 loss = py loss+12 loss
19
28 return {'py_logits':py logits,
21 'py_probs ' :py_probs,
22 Py ipY,
23 'loss':loss}

80
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Regularized model

1 # Then we can use the exact same training/evaluation loop on this new model

2 for epoch_num in range(num_epochs):

3

4 print{f'\nEpoch {epoch_num}"}

5| train _losses = []

6| train_pys = []

7 train_ys = []

8 for step_num, train_batch in enumerate(train_dataloader):

9 reg_optimizer.zero_grad()

18 train_output = reg model(**train_batch)

11 train_loss = train_output['loss']

12 if step num >8 and step num % 588 == 6:

13 print(f \tStep {step_num} mean training loss: {np.mean(train_losses[-588:]):.3f}")

14

15 # The one thing I change here is to evaluate the dev loss more frequently so we can see how it's changing
16 dev_pys = []

17 dev_ys = []

18 for dev_batch in dev_dataloader:

19 with torch.no_grad():

28 dev_output = reg_model(**dev_batch)

21 dev _ys.append{dev_batch['y'].detach().numpy())

22 dev_pys.append{dev_output[ 'py"].detach().numpy())

23 print(f \tDev accuracy:{accuracy_score(np.concatenate(dev_ys), np.concatenate(dev_pys)):.3f}")
24

25 train_losses.append(train_loss.detach().numpy())

26 train_ys.append(train_batch['y"'].detach{}).numpy())

27 train_pys.append(train_output[ 'py"'].detach{).numpy())

28

29 train_loss.backward()

38 reg_optimizer.step()

31

32 print(f'Mean train loss: {np.mean(train_losses):.3f}")

33 print(f'Train accuracy:{accuracy_score(np.concatenate(train_ys), np.concatenate(train_pys)):.3f}")
34 print(f’'Dev accuracy:{accuracy_score(np.concatenate({dev_ys), np.concatenate(dev_pys)):.3f}")

¢
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Regularized Model

Regularization didn’t really help in this case. May be too simple model

We can observe we’re doing a lot of extra work though...

Epoch @

Step 5@ mean training loss: 8.582

Dev accuracy:8.
Step 1888 mean
Dev accuracy:8.
Step 1588 mean
Dev accuracy:8.
Step 2883 mean
Dev accuracy:8.
Step 2588 mean
Dev accuracy:8.
Step 2888 mean
Dev accuracy:8.
Step 3588 mean
Dev accuracy:8.
Step 48683 mean
Dev accuracy:8.

Mean train loss: 8.375
Train accuracy:@.849
Dev accuracy:8.3822

759

training loss:

811

training loss:

791

training loss:

285

training loss:

814

training loss:

219

training loss:

211

training loss:

822

8.4338

e

a.

L3381

362

.338

.328

.313

. 385

Epoch 1

Step 5@ mean training loss: 8.256

Dev accuracy:8.
Step 1888 mean
Dev accuracy:8.
Step 1588 mean
Dev accuracy:8.
Step 2888 mean
Dev accuracy:8.
Step 2588 mean
Dev accuracy:8.
Step 3888 mean
Dev accuracy:8.
Step 3588 mean
Dev accuracy:8.
Step 4883 mean
Dev accuracy:8.

Mean train loss: @.26@
Train accuracy:8.983
Dev accuracy:8.817

32@
training
285
training
823
training
815
training
826
training
219
training
815
training
817

loss:

loss:

loss:

loss:

loss:

loss:

loss:

a.

a.

262

268

.255

.263

.258

.253

. 257
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Early stopping

Basic idea: Keep an eye on the development set performance (either loss or accuracy),
and stop the training loop early when the improvement seems to level off

« Often save model checkpoints only on improvement, and then reload best checkpoint

at the end of training

Another way to avoid
overfitting

Loss

20 4

15 A

0.5 1

0.0 4

epochs_vs _loss

—  (raining loss
tesing loss

W

VAN

20

40 &0
epochs

80

100

100

alCuracy

20

epochs_vs_accuracy

= lraining accuracy
tesing accuracy

l

0

20 40

100

overfitting

https://neptune.ai/blog/early-stopping-with-neptune
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Early stopping

4 patience=3

5 best_dev_acc= 8.8

6 intervals since improvement=8
7 early stop = False

37
38
39
44
41
42
43
44
45
46
47
43
449

#Early stopping logic
dev_acc = accuracy_score(np.concatenate(dev_ys), np.concatenate(dev_pys))
print(f'\tDev accuracy:{dev_acc:.3f}"}
if dev_acc > best dev _acc:
best dev acc = dev_acc
intervals since improvement =8
else:
intervals since improvement +=1

if intervals_since_improvement »> patience:
print{'Stopping early!")
early stop = True
break

Epoch @

Step 586 mean training loss: 8.556

Dev accuracy:8.782

Step 1888 mean training loss:

Dev accuracy:9.783

Step 1588 mean training loss:

Dev accuracy:9.283

Step 28686 mean training loss:

Dev accuracy:8.287

Step 2588 mean training loss:

Dev accuracy:9.8e2

Step 3888 mean training loss:

Dev accuracy:8.818

Step 3586 mean training loss:

Dev accuracy:8.827

Step 4888 mean training loss:

Dev accuracy:8.82@
Mean train loss: 8.374
Train accuracy:8.858

Epoch 1
Step 580 mean training loss:
Dev accuracy:8.818

Step 1888 mean training loss:

Dev accuracy:9.817

Step 1588 mean training loss:

Dev accuracy:8.2828
Stopping early!

e

a.

LA38

388

L3681

.358

.321

.3838

. 382

8.251

a.

a.

267

268
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Concluding thoughts

PyTorch: Machine learning Legos

Mini-batch gradient descent
e Batch size very important

Training loop
Avoid overfitting by:

* Regularization
* Early stopping
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