
Neural Net Training with PyTorch
CS 780/880 Natural Language Processing Lecture 12

Samuel Carton, University of New Hampshire

Last lecture

2

Linear regression

• Learn 𝑊𝑥 + 𝑏 from data

• Predict continuous values

• Optimize mean squared error

Logistic regression

• Learn σ(𝑊𝑥 + 𝑏) from data

• Predict (close to) 0 or 1

• Optimize cross-entropy

Key concepts:

• Loss function

• I.e. objective function

• Gradient of loss with respect to
parameters

• Gradient descent

• Activation function

PyTorch

PyTorch is a deep learning library

• Define the structure of a neural net

• Use gradient descent to train it

• Implementations of common structural elements

Created and maintained by Meta

Competes primarily with TensorFlow (Google)

Fairly dominant in research right now

3

Tensors

A tensor is an N-dimensional array of values

• e.g. a scalar (0D), vector (1D), or matrix (2D)

Any neural net is basically just a bunch of tensor
operations

GPUs happen to be good at doing tensor operations
quickly

4

https://www.javatpoint.com/pytorch-tensors

Tensors – Basic operations and dimensionality
Basic operations

5

Dimensionality

PyTorch Tensors are
functionally almost identical
to Numpy arrays

Tensors – Convenient functionality

6

Gradient Descent

Basic idea: Calculate the loss over the whole training
set, do a step along the gradient, then recalculate the
loss and so on

7

https://www.analyticsvidhya.com/blog/2022/07/gradient-descent-and-its-types/

Mini-batch gradient descent

For big datasets/models, we can’t fit all training
gradients in memory.

So we do our steps on batches of the data, one
at a time

When the batch size is 1, it’s called stochastic
gradient descent

Batch size is a hugely important

hyperparameter in neural net training.

• Bigger usually better, but requires a bigger GPU

• Why Nvidia A100s are like $15k

8

Reading and preprocessing SST-2 dataset

9

Reading and preprocessing SST-2 dataset

10

PyTorch Datasets

11

PyTorch DataLoaders

12

PyTorch models

PyTorch models always extend torch.nn.Module

They always have:

• An __init__() method which defines the structure of the model

• A forward() method which takes in the input and spits out the model output

As long as the output of forward() is composed of differentiable tensor-on-tensor
operations, then PyTorch can use automatic differentiation to figure out
∆𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠𝑜𝑢𝑡𝑝𝑢𝑡, and then subsequently do gradient descent.

13

Our model

14

Our model

15

PyTorch training loop

Basic pseudocode:

For each epoch:

For each training batch:

Zero the accumulated grads

Run model on training batch

Calculate loss

Perform gradient descent on step

(optional)

For each validation batch:

Run model on validation batch

Report overall validation accuracy

16

Training loop

Preliminary stuff

17

Training loop

18

Training loop

19

L1/L2 Regularization

Basic idea: discourage any one feature from having too much of an impact on the model
output by punishing the sum (L1) or squared-sum (L2) of the model parameters

Standard way to discourage overfitting

Done automatically by

most scikit-learn models

20

Regularized model

21

Regularized model

22

Regularized Model

Regularization didn’t really help in this case. May be too simple model

We can observe we’re doing a lot of extra work though…

23

Early stopping

Basic idea: Keep an eye on the development set performance (either loss or accuracy),
and stop the training loop early when the improvement seems to level off

• Often save model checkpoints only on improvement, and then reload best checkpoint
at the end of training

Another way to avoid
overfitting

24
https://neptune.ai/blog/early-stopping-with-neptune

Early stopping

…

…

25

Concluding thoughts

PyTorch: Machine learning Legos

Mini-batch gradient descent

• Batch size very important

Training loop

Avoid overfitting by:

• Regularization

• Early stopping

26

	Slide 1: Neural Net Training with PyTorch
	Slide 2: Last lecture
	Slide 3: PyTorch
	Slide 4: Tensors
	Slide 5: Tensors – Basic operations and dimensionality
	Slide 6: Tensors – Convenient functionality
	Slide 7: Gradient Descent
	Slide 8: Mini-batch gradient descent
	Slide 9: Reading and preprocessing SST-2 dataset
	Slide 10: Reading and preprocessing SST-2 dataset
	Slide 11: PyTorch Datasets
	Slide 12: PyTorch DataLoaders
	Slide 13: PyTorch models
	Slide 14: Our model
	Slide 15: Our model
	Slide 16: PyTorch training loop
	Slide 17: Training loop
	Slide 18: Training loop
	Slide 19: Training loop
	Slide 20: L1/L2 Regularization
	Slide 21: Regularized model
	Slide 22: Regularized model
	Slide 23: Regularized Model
	Slide 24: Early stopping
	Slide 25: Early stopping
	Slide 26: Concluding thoughts

