Linear and Logistic Regression

CS 780/880 Natural Language Processing Lecture 11

Samuel Carton, University of New Hampshire

Last lecture

Key concepts: Key insight: Lots of tasks, not so many
« Benchmark datasets basic modeling approaches

* SuperGLUE * Language modeling objective gets you a
e Various NLP tasks long way if the model is good enough

« Inference detection * GPT-3isavery good language model

* Translation

* BLEU score
« Common-sense reasoning
* Reading comprehension

Linear
regression

Linear regression

Basic idea: given some points in N-dimensional space,
find a “line of best fit” that is as close as possible to
those points.

When the points are text:
N =vocabularysize
 Examples:

* Grading essays 0-100

* Scoring text complexity

Linear regression

Mathematically, what we’re trying to do is figure out
some function:

y=Wx+b

...Wwhere W and b are values such that y tends to be
close to y for any given x.

X
Very common in ML to refer to predicted output as y and
true outputasy. /J

Loss function

We generally articulate this goal with a loss function
that describes the value we’re trying to minimize with
our choice of Wand b.

AKA “Obijective function”

It’s very typical to minimize squared loss between
expected and true output: N
P P Z()’i —¥;)?
i

That would give us a loss function of:
LW,b) = X,(9; — yi)?

= Fo = ¥0)* + 1 —y1)* + (F2 — ¥2)? @

= (Wxo+b—yo)* + (Wxy + b —y)* + Wx, + b — y,)*

Simple example

To show how we can solve this, I’ll use a simple example
with no intercept (b)

So the loss function is: 5

LW, b) = 3,5 — y:)* X
= Fo—y0)* + 1 —y1)? + P2 — ¥2)?

>

A
= (Wxg —¥0)? + Wxy —y1)* + (Wxy, — y,)? ?
= (W?xy* = 2WxoYo + ¥o*) 7T \
+(W2xy% = 2Wxyy; + y1%) /

+(W2xy% = 2Wxyy, + y2%)

= W2(x? + x1% + x3%) = 2W (xoyo + x1¥1 + %2¥2) + Vo + y12 + ¥22)

§]

Simple example

If the loss function for W is this: Then the graph of L as a function of W looks like this:

L(W) = W?(xg? + x12 + x,2)
—2W (xoyo + x1¥1 + x2¥>)
+(o® + y1° +¥2°)

Simple example

It’s pretty obvious what value of W will
minimize the loss here.

Simple example

What may be less obvious is that this also
happens to be the point where the derivative
of L with respectto W is 0.

dL _

dw

In some sense it is the bottom of a pit.

Gradient descent is the process of gradually
following the slope of the function down to
these pit-bottoms W/

10

Simple example

In the most simple case, we pick a random
point on the function and find the slope
(derivative)

Then we move some incremental distance
in the direction that reduces the value of L
(left in this case)

This increment that we move each step is
called the learning rate

L

11

Simple example

Then we calculate the slope again at this
new point and move one increment in the
reducing-L direction (still left).

12

Simple example

And we keep doing that...

Simple example

And keep doing that...

Simple example

Until we hit a point on W where the slope
seems to have levelled out

That is, L
dw

And we conclude that we’ve found the value
of W that minimizes L

L

15

Adding back the intercept

So what if our function does have an intercept?
LW,b) = 3,9 — yi)?
= o —y0)* + 1 —y1)* + (P2 — ¥2)*
= Wxo+b—y0)?+ Wx; +b—y)* + (Wx, + b —y,)*

= (W2xy2 — 2Wxgyo + 2Wbhxy — b2yy + yo? + b?)
+(W2x12 — walyl + Zbel - bzyl + y12 +b2) /J
+(W2x22 — wazyz + ZWbXZ - bzyz + y22 +b2)

= Wz(xoz + x12 + xzz)

—2W (xpyo + x1¥1 + x2¥2)

+2Wh(xy + x4 + x5)

—2b(yo +y1 +¥2) @
+(o* + y1% + ¥2%)

+3b? y

Adding back the intercept

So what if our function does have an intercept?

L(W, b) = Wz(xoz + x12 + xzz)
—2W (xoyo + x1Y1 + x2¥2)
+2Wh(xy + x4 + x5)
—2b(yo +y1 +¥2)
+(o* + y1% + ¥2%)
+3b?

More complicated, but the key thing is that L is still just a \/
quadratic function of Wand b

17

Adding back the intercept

So the loss becomes a 2-dimensional function, and
we’re trying to find a value for W and a value for b,
which, taken together, minimize L

18

Adding back the intercept

We can still use gradient descent though! /, S
}L

Only now, instead of following the derivative ;—VLV of L —

DA W
with respect to W to the bottom... 0
We now follow a vector composed of the partial L
, . (0L 0L NS
derivates of L with respect to W and b: (W’%)

We call this vector the gradient of L with respect to

W and b, and usually denote it with the A symbol, e.g. /ﬁ/ﬁ—?

A; (W,b)

19

Gradient descent

Gradient descent is the method by which all neural nets are trained.

It works™ in any situation where it is possible to calculate the gradient of the loss with
respect to the model parameters

e ¥y =Wx+ bhastwo parameters: Wand b
ChatGPT has 175 billion parameters

*

: it works more or less well depending on the shape of the loss function.
If the function is a nice convex “bucket”, then it will always find the global minimum.
But this is not usually true

v

20

Local minima

Oneissue in gradient descent is “local minima” which
are false “dips” the gradient descent can get stuck in.

21

Saddle points

Another issue is “saddle points” which represent a

minimum for one parameter but a maximum for a
different one.

The gradient for both can be zero here... butit’s not
necessarily a very good solution.

22

Advanced gradient descent

Advanced gradient descent algorithms have various tricks to help them avoid local

minima and other issues

Most popular: Adam

* Uses “momentum” to learn adaptive
learning rate for each parameter

* Generally the default choice for optimizing
any arbitrary neural net

Long story short: just use Adam for everything
* Unless you have a good reason not to

H arxiv

https:/farkiv.org:cs 3
[1412.6980] Adam: A Method for Stochastic Optimization - arXiv
P a
by DP Kingma - 2014 - Cited by e.l:nst’act: We introduce Adam, an algorithm for first-
order gradient-based optimization of stochastic objective functions, based on adaptive..

Cite as: arXiv:1412.6980

v

23

Logistic
regression

Logistic regression

Generally in NLP we’re more interested in
classification than regression

* Mapping input x’s to a discrete category
rather than a continuous value

Linear regression not ideal for this

We can do it hackily with a threshold on the
predicted value

e But this has problems

OLy— — ~

25

Logistic function

To solve this problem, we are going to wrap our

original function, which we will call f, in a logistic 3 =T
function
B 1 _ 1

O'(X) - 1 + e_x O'(f(.X')) - 1 + e—(Wx+b) _ aa
One nice thing about itis thatitis easy to differentiate /
because of the property that:

d Prop y I / 8 I J
20 =0()(A - a(x)) % =% = 0 3 4 3

https://en.wikipedia.org/wiki/Logistic_function
So if we call our original function f:

d
—0(f()) = o(f (1 = o(FN)f' (@) = Wo(Wx + b)(1 — s(Wx + b)) @

26

Logistic regression

So now instead of trying to fit a straight line to
the data, we’re trying to choose W and b to fit this
S-shaped logistic curve to the data

Different choices for W and b change how steep
the curve is and where it is centered.

27

Gradient descent for logistic regression

| won’t do the full derivation, but:

* Thefunction we’re trying to fit is differentiable

* Which means we can create a differentiable loss function
* Which means we can do gradient descent!

However: mean squared error is not always convex for logistic regression

So we typically use cross-entropy loss as our objective: L(y,9) = z y:log(¥,)
Cc

* Sum across possible classes of true value for that class
multiplied by predicted log-probability of that class

More detailed discussion available in Speech and Language Processing chapter @
5: https://web.stanford.edu/~jurafsky/slp3/5.pdf

28

https://web.stanford.edu/~jurafsky/slp3/5.pdf

Visualizing linear regression

Orin a graphical form which shows how the
individual x’s come together to form $

A
Y

—_— A TA
N N W) |
Vv, X, XE oy V" V? _
0 "L M W ?\ @ \O
Ko Ay XA | ,}/\9 :/_
b, : : Wo \’//\/
\ N
TRy X E L Z‘A/"’ éth /V/u
o ¥, X

| 7)4.\"’
‘\Hnsl, o \\/775“ gv’jn@

29

You can think of linear regression as a vector
operation between matrices of x’s, W’s and ys

Visualizing logistic regression

You can do the same thing for logistic regression by adding the ¢ function

A
Y
i

/\,
<
<<
<o
s ©
>
=
?
NN
—
&
S

Visualizing logistic regression

When we think of the logistic function as a final step being {,\

placed on top of the weighted sum Wx + b in order to A

squeeze it down to [0,1], then we call it an activation |

function @ — \O
There are a bunch of activation functions commonly used in We N
neural nets: v/ W

* Rectified linear (relu), tanh, etc...

https://pytorch.org/docs/stable/nn.html#non-linear- ° %' A L >A\N

activations-weighted-sum-nonlinearity

But logistic is the classic one @

https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity
https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity

Linear vs logistic
regression in
practice

Read the SST-2 dataset

1 display{dev df)
sentence label
0 it 's a charming and often affecting journey . 1
1 unflinchingly bleak and desperate 0
2 allows us to hope that nolan is poised to emba. . 1
3 the acting , costumes , music , cinematography... 1
4 it 's slow -- very , very slow . 0
867 has all the depth of a wading pool . 0
868 a movie with a real anarchic flair . 1
869 a subject like this should inspire reaction in... 0
870 ... Is an arthritic attempt at directing by ca... 0
871 looking aristocratic , luminous yet carewom i... 1

872 rows x 2 columns

33

Preprocessing and vectorizing the data

1 # 55T-2 is actually already lowercased and tokenized, but it's good to get in
2 # the habit of always doing these during preprocessing

3 stemmer = PorterStemmer()

4 def preprocess(s):

5 return ' '.join([stemmer.stem(token) for token in word tokenize(s.lower())])

1 train_df['preprocessed’] = train_df['sentence'].apply(preprocess)
2 dev_df['preprocessed’] = dev_df['sentence'].apply(preprocess)

1 display(dev_df)

sentence label preprocessed

0 it 's & charming and often affecting journey . 1 it 's a charm and often affect journey .
1 unflinchingly bleak and desperate 0 unflinchingli bleak and desper
2 allows us to hope that nolan is poised to emba... 1 allow us to hope that nolan is pois to embark ...
3 the acting , costumes , music , cinematography... 1 the act, costum , music , cinematographi and ...
4 it 's slow -- very , very slow . 0 it's slow -- veri , veri slow .
867 has all the depth of a wading pool . 0 ha all the depth of a wade pool .
868 a movie with a real anarchic flair . 1 a movi with a real anarch flair .
3] a subject like this should inspire reaction in... 0 a subject like thi should inspir reaction in i...
870 _.. I an arthritic attempt at directing by ca... 0 ... is an arthrit attermnpt at direct by calli k...
871 looking aristocratic , luminous yet carewom i... 1 look aristocrat , lumin yet careworn in jane h...

34

872 rows x 3 columns

Preprocessing and vectorizing the data

1 from sklearn.feature extraction.text import CountVectorizer

1 wvectorizer = CountVectorizer()
2 train_X = vectorizer.fit_transform{train_df['preprocessed’'])
3 display(train_X)

<G7349x18186 sparse matrix of type '<class "numpy.intéd’»’
with 535539 stored elements in Compressed Sparse Row format:

1 dev X = vectorizer.transform{dev_df[' preprocessed’])
2 display{dev X)

<872x18186 sparse matrix of type "<class 'numpy.inted”:’
with 12932 stored elements in Compressed Sparse Row format:

35

Linear regression - Training

1 from sklearn.linear model import LinearRegression

1 # As with most cases, it's wvery easy to instantiate and train a linear regression model
2 # in scikit-learn

3

4 # Mote: 55T-2 is NOT a regression task. It is a classification task.

L

& # However, because the label is either 8 or 1, we can still sort of treat it as
7 # a regression task, by treating those as target values for the model.

8

9 # This only works for ordinal classification tasks, where there's an easy
18 # way of converting from labels to numbers
11
12 1lin_reg model = LinearRegression()
13 1in_reg model.fit(train_X, train_df[label’])

LinearRegression()

36

Linear regression - Training

=)
6 display({dev_df)

872 rows ® 4 columns

sentence label

0 it's a charming and often affecting journey . 1
1 unflinchingly bleak and desperate 0
2 allows us to hope that nolan is poised to emba. .. 1
3 the acting , costumes , music , cinematography... 1
= it 's slow - very , very slow . 0
867 has all the depth of a wading pool . 0
868 a movie with a real anarchic flair . 1
869 a subject like this should inspire reaction in... 0
870 ... Is an arthritic attempt at directing by ca... 0
871 looking aristocratic , luminous yet carewom ... 1

1 # Motice that because it is a regression model, the predictions are continuous
2 # values that aren't necessarily bounded between & and 1

3 train_df['lin_reg prediction'] = lin_reg model.predict(train X)

4 dev_df["lin_reg prediction’] = lin_reg model.predict(dev X)

preprocessed 1lin reg prediction

it 's a charm and often affect journey .
unflinchingli bleak and desper

allow us to hope that nolan is pois to embark ..
the act , costum | music , cinematographi and ___

it's slow -- veri , veri slow .

ha all the depth of a wade pool .

a movi with a real anarch flair .

a subject like thi should inspir reaction in i...
... Is an arthrit attempt at direct by calli k...

lock aristocrat , lumin yet careworn in jane h...

1.156662

-0.0689508

0.919836

0.934645

0.031911

0.514821

1.922209

0.914590

0.326833

0.09828%

80

37

Linear regression - Evaluation

We can't use classification metrics when we do regression, because those only work
for discrete categorical values

1
2
3
4 # Instead, we measure the average discrepancy between target value and true walue

S # The two most common metrics are mean squared error (MSE) and mean absolute error (MAE)
6

7

8

9

from sklearn.metrics import mean squared error, mean_absolute error

def evaluate_regression(y, py):
18 | print(f'Mean squared error: {mean_squared error(y,py):.3f}")
11 | print(f’'Mean absolute error: {mean_absolute error(y,py):.3f}")

Smaller values are better. MNotice how overfitted we are to the training data

print{'Train linear regression results:")

4 evaluate regression(train_df['label'], train_df['lin_reg prediction'])
5 print({'\nDev linear regression results:')

6 evaluate regression(dev df['label’], dev df['lin _reg prediction’])

Train linear regression results:
Mean squared error: B8.878
Mean absolute error: 8.219

Dev linear regression results:
Mean squared error: 8.38%9
Mean absolute error: 8.472

38

Linear regression - Evaluation

1 from sklearn.metrics impeort accuracy_score, precision_score, recall_score, fl_score
2 import numpy as np

3

8.5 is a reasonable value for the threshold in this circumstance

def evaluate_thresholded_regression(y, py, threshold=8.5):

Numpy vectors/pandas Series can be compared to scalars, producing a bool
vector, which the classification metric functions can handle

t ¥y = (y >= threshold)

18| t py = (py »= threshold)

11
12 | print(f'Accuracy: {accuracy_score(t_y, t_py):.3f}")
13 | print(f'Precision: {precision_score(t_y, t_py):.3f}")
14 | print(f'Recall: {recall score(t_y, t_py):.3f}")

15 | print(f'Fl: {f1 score(t_y, t_py):.3f}")

W 88 = h o s

1 # We were doing better with Maive Bayes a couple weeks ago.

2 print{ 'Thresholded train linear regression results:')

3 evaluate_thresholded_regression(train_df["label’'], train_df['lin_reg prediction’])
4 print(" \nThresholded dev linear regression results:')

S evaluate_thresholded_regression(dev_df['label'], dev_df['lin_reg _prediction'])

Thresholded train linear regression results:
Accuracy: 8.927

Precision: 8.919

Recall: @.953

F1: &.936

Thresholded dev linear regression results:
Accuracy: B8.744

Precision: 8.735

Recall: &.779

Fl: 8.756 39

Linear regression - Global explanations

5 def explain_binary linear model(model, vocabulary, k=18):
6| # This is necessary because the coefs for logistic regression can be a 2D matrix
7| # (though they won't be in this notebook)
2 | model coefs = np.squeeze(model.coef)
9| sorted coef indices = np.argsort(np.abs{model coefs))
18 | # Grab the indices of the top k indices and flip their order to descending
11| top k_indices = sorted coef indices[:-k:-1]
12 | # Numpy vectors can be indexed by multiple indices at once
13| top k coefs = model coefs[top k indices]
14 | # Python lists aren't so flexible, so we have to use a comprehension
15| top k words = [vocabulary[index] for index in top k_indices]
16 | for word, coef in zip(top k words, top k coefs):
17 print(f " \tWord: {word} - Coef: {coef:.3f}")

1 # These words make... a lot less sense than the ones we got back for Naive Bayes
2 # Why might that be?

3 print(f'Top 18 coefficients in our linear regression model: ')

4 explain _binary linear model(lin reg model, vocabulary)

Top 1@ coefficients in our linear regression model:
Word: edmund - Coef: -2.893
Word: embed - Coef: 1.668
Word: schtick - Coef: 1.619
Word: interchang - Coef: 1.581
Word: drung - Coef: 1.561
Word: purgatori - Coef: -1.548
Word: size - Coef: -1.388
Word: wire - Coef: 1.357
Word: kangarco - Coef: -1.353

40

‘“Kangaroo” and “Edmund”

“Kangaroo”

“Edmund”

KANGAROO JACK

PG 2003, Comedy, 1h 29m

8% D 29%

TOMATOMETER AUDIENCE SCORE
114 Reviews 50,000+ Ratings
7

41

Linear regression - Local explanations

1 # We can also generate explanations for individual predictions using similar logic
def explain binary linear model prediction(input,model, wvectorizor):

3
4
5| # This is necessary because the coefs for logistic regression can be a 2D matrix
6| # (though they won't be in this notebook)

7 | model coefs = np.sgqueeze(model.coef_)

8

9

Assume the input hasn't been preprocessed, so do that and then vectorize it
18 | preprocessed = preprocess{input)

11| tokens = preprocessed.split(" ")

12 | input X = vectorizer.transform([preprocessed])

13
14 | py = model.predict(input X)[8]
15| print(f'Prediction: {py}")}

16
17 | print(f'Word coefficients:')
18 | for token in tokens:

19 if token in vectorizer.vocabulary : # Skip any tokens that are not in the vectorizer vocab
28 token_index = wvectorizer.vocabulary [token]

21 token coef = model coefs[token_index]

22 print(f’'\tWord: {token} - Coef: {token_coef:.3f}")

23

24 | print(f'Model intercept: {model.intercept }')

42

Linear regression - Local explanations

1 # We can see in this example that the prediction is just below 8.5
2 # "poorly" is considered much more negative than "well"™ was positive,
3 # but the high intercept almost pushes the total sum above 8.5

4

5 explain binary linear model prediction({’the movie was well written but poorly acted.’,
6 lin reg model,

7 vectorizer)

Prediction: ©.47644153366811277

Word coefficients:
Word: the - Coef: -8.885
Word: movi - Coef: ©.882
Word: wa - Coef: -8.8790
Word: well - Coef: 8.161
Word: written - Coef: 8.887
Word: but - Coef: 8.847
Word: poorli - Coef: -8.337
Word: act - Coef: -8.881

Model intercept: ©.6821882139311285

43

Binary logistic regression - Training

1 from sklearn.linear model import LogisticRegression

1 log reg model = LogisticRegression()
2 log reg model.fit(train X, train_df["label’])

Jusr/local/lib/python3.8/dist-packages/sklearn/linear_model/ logistic.py:814: Convergencelarning: lbfgs failed to converge (status=1}):
STOP: TOTAL MWO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing. himl
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear model.html#logistic-regression
n_iter i = check optimize result(
LogisticRegression()

44

Linear regression - Training

3
4 display(dev_df)

0 it 's a charming and often affecting journey _
1 unflinchingly bleak and desperate

2 allows us to hope that nolan is poised to emba...

% the acting . costumes , music , cinematography...

4 it 's slow — very , very slow .
867 has all the depth of a wading pool .
868 a movie with a real anarchic flair .
869 a subject like this should inspire reaction in...
870 ... Is an arthritic attempt at directing by ca...
871 looking aristocratic , luminous yet carewom i...

872 rows x 5 columns

sentence label

1

1 train_df['log reg prediction’'] = log reg model.predict(train X)
2 dev_df['log_reg prediction'] = log reg model.predict(dev X)

preprocessed lin_reg prediction

it 's a charm and often affect journey .
unflinchingli bleak and desper

allow us to hope that nolan is pois to embark ...
the act , costum , music , cinematographi and ...

it's slow -- vern , veri slow .

ha all the depth of a wade pool .

a movi with a real anarch flair .

a subject like thi should inspir reaction ini...
... Is an arthrit attempt at direct by calli k...

look aristocrat | lumin yet careworn in jane h..

1.156662

-0.069508

0.919836
0.934645

0.031911

0.514821
1.922209
0.914590
0.326833

0.0982865

log reg prediction
1

0

45

Logistic regression - Evaluation

1 # Mow we don't have to do any thresholding of our own, so we can
2 # just use the classification metrics as-is

3 def evaluate classification(y, py):

4 | print{f'Accuracy: {accuracy_score(y, py):.3f}")

5 print(f'Precision: {precision score(y, py):.3f}")

6 | print({f'Recall: {recall score(y, py):.3f}")

7| print{f'Fl: {f1 score(y, py):.3f}")

1 # Looking better! This is pretty similar to what we were getting with Naive Bayes
2 # 5till some overfitting happening though.

3 print('Train logistic regression results:')

4 evaluate classification{train df["label’], train_df['log reg prediction'])

5 print({"\nDev logistic regression results:")

6 evaluate classification{dev df['label’'], dev_df['log reg prediction’'])

Train logistic regression results: Thresholded train linear regression results:
Accuracy: B8.926 Accuracy: 8.927

Precision: @.927 Precision: ©.919

Recall: @.%48 Recall: @.953

Fl1: 8.934 F1: &.936

Dev logistic regression results: Thresholded dev linear regression results:
Accuracy: ©.368 Accuracy: 6.744

Precision: ©.794 Precision: 8.735

Recall: @.842 Recall: 8.779

F1: 8.817 F1: &.756

46

Logistic regression - global explanations

1 # These look better
2 print(f 'Top 18 coefficients in our logistic regression model:')
3 explain binary linear model(log reg model, wvocabulary)

Top 18 coefficients in our logistic regression model:

Word: lack - Coef: -4.3B9

Word: worst - Coef: -4.88/2

Word: anatom - Coef: 4.815

Word: devoid - Coef: -3.871

Word: failur - Coef: -3.783

Word: refresh - Coef: 3.654

Word: stupid - Coef: -3.521

Word: assum - Coef: -3.437

Word: mess - Coef: -3.487

47

Logistic regression - Local explanations

1 # We can explain individual predictions the same way too

2

3 # Interestingly, we see the same effect with "was" as we observed when we

4 # did Maive Bayes

5 explain_binary linear model prediction{'the movie was well written but poorly acted.’,
6 log reg model,

7 vectorizer)

Prediction: @

Word coefficients:
Word: the - Coef: -8.823
Word: movi - Coef: -©.854
Word: wa - Coef: -8.983
Word: well - Coef: 1.488
Word: written - Coef: 8.483
Word: but - Coef: 8.877
Word: poorli - Coef: -2.898
Word: act - Coef: -8.861

Model intercept: [@.36018711]

48

Concluding thoughts

Linear regression

Learn Wx + b from data
Predict continuous values
Optimize mean squared error

Logistic regression

Learn o(Wx + b) from data
Predict (closeto) O or 1
Optimize cross-entropy

Key concepts:

Loss function
* |.e.objective function

Gradient of loss with respect to
parameters

Gradient descent
Activation function

49

	Slide 1: Linear and Logistic Regression
	Slide 2: Last lecture
	Slide 3: Linear regression
	Slide 4: Linear regression
	Slide 5: Linear regression
	Slide 6: Loss function
	Slide 7: Simple example
	Slide 8: Simple example
	Slide 9: Simple example
	Slide 10: Simple example
	Slide 11: Simple example
	Slide 12: Simple example
	Slide 13: Simple example
	Slide 14: Simple example
	Slide 15: Simple example
	Slide 16: Adding back the intercept
	Slide 17: Adding back the intercept
	Slide 18: Adding back the intercept
	Slide 19: Adding back the intercept
	Slide 20: Gradient descent
	Slide 21: Local minima
	Slide 22: Saddle points
	Slide 23: Advanced gradient descent
	Slide 24: Logistic regression
	Slide 25: Logistic regression
	Slide 26: Logistic function
	Slide 27: Logistic regression
	Slide 28: Gradient descent for logistic regression
	Slide 29: Visualizing linear regression
	Slide 30: Visualizing logistic regression
	Slide 31: Visualizing logistic regression
	Slide 32: Linear vs logistic regression in practice
	Slide 33: Read the SST-2 dataset
	Slide 34: Preprocessing and vectorizing the data
	Slide 35: Preprocessing and vectorizing the data
	Slide 36: Linear regression - Training
	Slide 37: Linear regression - Training
	Slide 38: Linear regression - Evaluation
	Slide 39: Linear regression - Evaluation
	Slide 40: Linear regression - Global explanations
	Slide 41: “Kangaroo” and “Edmund”
	Slide 42: Linear regression – Local explanations
	Slide 43: Linear regression – Local explanations
	Slide 44: Binary logistic regression – Training
	Slide 45: Linear regression – Training
	Slide 46: Logistic regression – Evaluation
	Slide 47: Logistic regression – global explanations
	Slide 48: Logistic regression – Local explanations
	Slide 49: Concluding thoughts

