

Linear and Logistic Regression

CS 780/880 Natural Language Processing Lecture 11 Samuel Carton, University of New Hampshire

Last lecture

Key concepts:

- Benchmark datasets
 - SuperGLUE
- Various NLP tasks
 - Inference detection
 - Translation
 - BLEU score
 - Common-sense reasoning
 - Reading comprehension

Key insight: Lots of tasks, not so many basic modeling approaches

- Language modeling objective gets you a long way if the model is good enough
- GPT-3 is a very good language model

Linear regression

Linear regression

Basic idea: given some points in N-dimensional space, find a "line of best fit" that is as close as possible to those points.

When the points are text:

- N = vocabulary size
- Examples:
 - Grading essays 0-100
 - Scoring text complexity

Linear regression

Mathematically, what we're trying to do is figure out some function:

 $\hat{y} = Wx + b$

...where W and b are values such that \hat{y} tends to be close to y for any given x.

Very common in ML to refer to predicted output as \hat{y} and true output as y.

Loss function

We generally articulate this goal with a **loss function** that describes the value we're trying to minimize with our choice of W and b.

AKA "Objective function"

It's very typical to minimize **squared loss** between expected and true output: $\sum (\hat{y}_i - y_i)^2$

That would give us a loss function of:

$$L(W, b) = \sum_{i} (\hat{y}_{i} - y_{i})^{2}$$

= $(\hat{y}_{0} - y_{0})^{2} + (\hat{y}_{1} - y_{1})^{2} + (\hat{y}_{2} - y_{2})^{2}$
= $(Wx_{0} + b - y_{0})^{2} + (Wx_{1} + b - y_{1})^{2} + (Wx_{2} + b - y_{2})^{2}$

To show how we can solve this, I'll use a simple example with **no intercept** (b)

So the loss function is:

$$\begin{split} L(W,b) &= \sum_{i} (\hat{y}_{i} - y_{i})^{2} \\ &= (\hat{y}_{0} - y_{0})^{2} + (\hat{y}_{1} - y_{1})^{2} + (\hat{y}_{2} - y_{2})^{2} \\ &= (Wx_{0} - y_{0})^{2} + (Wx_{1} - y_{1})^{2} + (Wx_{2} - y_{2})^{2} \\ &= (W^{2}x_{0}^{2} - 2Wx_{0}y_{0} + y_{0}^{2}) \\ &+ (W^{2}x_{1}^{2} - 2Wx_{1}y_{1} + y_{1}^{2}) \\ &+ (W^{2}x_{2}^{2} - 2Wx_{2}y_{2} + y_{2}^{2}) \end{split}$$

 $= W^{2}(x_{0}^{2} + x_{1}^{2} + x_{2}^{2}) - 2W(x_{0}y_{0} + x_{1}y_{1} + x_{2}y_{2}) + (y_{0}^{2} + y_{1}^{2} + y_{2}^{2})$

If the loss function for W is this:

$$L(W) = W^{2}(x_{0}^{2} + x_{1}^{2} + x_{2}^{2})$$

-2W(x_{0}y_{0} + x_{1}y_{1} + x_{2}y_{2})
+(y_{0}^{2} + y_{1}^{2} + y_{2}^{2})

Then the graph of L as a function of W looks like this:

It's pretty obvious what value of *W* will minimize the loss here.

What may be less obvious is that this also happens to be the point where the derivative of L with respect to W is 0.

 $\frac{dL}{dW} = 0$

In some sense it is the bottom of a pit.

Gradient descent is the process of gradually following the slope of the function down to these pit-bottoms

In the most simple case, we pick a random point on the function and find the slope (derivative)

Then we move some incremental distance in the direction that **reduces** the value of L (left in this case)

This increment that we move each step is called the **learning rate**

Then we calculate the slope again at this new point and move one increment in the reducing-L direction (still left).

And we keep doing that...

And keep doing that...

Until we hit a point on W where the slope seems to have levelled out

That is, $\frac{dL}{dW} = 0$

And we conclude that we've found the value of W that minimizes L

So what if our function **does** have an intercept?

$$L(W,b) = \sum_{i} (\hat{y}_{i} - y_{i})^{2}$$

= $(\hat{y}_{0} - y_{0})^{2} + (\hat{y}_{1} - y_{1})^{2} + (\hat{y}_{2} - y_{2})^{2}$
= $(Wx_{0} + b - y_{0})^{2} + (Wx_{1} + b - y_{1})^{2} + (Wx_{2} + b - y_{2})^{2}$
= $(W^{2}x_{0}^{2} - 2Wx_{0}y_{0} + 2Wbx_{0} - b2y_{0} + y_{0}^{2} + b^{2})$
+ $(W^{2}x_{1}^{2} - 2Wx_{1}y_{1} + 2Wbx_{1} - b2y_{1} + y_{1}^{2} + b^{2})$
+ $(W^{2}x_{2}^{2} - 2Wx_{2}y_{2} + 2Wbx_{2} - b2y_{2} + y_{2}^{2} + b^{2})$

$$= W^{2}(x_{0}^{2} + x_{1}^{2} + x_{2}^{2})$$

-2W(x_{0}y_{0} + x_{1}y_{1} + x_{2}y_{2})
+2Wb(x_{0} + x_{1} + x_{2})
-2b(y_{0} + y_{1} + y_{2})
+(y_{0}^{2} + y_{1}^{2} + y_{2}^{2})
+3b^{2}

So what if our function **does** have an intercept?

$$L(W,b) = W^{2}(x_{0}^{2} + x_{1}^{2} + x_{2}^{2})$$

-2W(x_{0}y_{0} + x_{1}y_{1} + x_{2}y_{2})
+2Wb(x_{0} + x_{1} + x_{2})
-2b(y_{0} + y_{1} + y_{2})
+(y_{0}^{2} + y_{1}^{2} + y_{2}^{2})
+3b^{2}

More complicated, but the key thing is that L is still just a quadratic function of W and b

So the loss becomes a 2-dimensional function, and we're trying to find a value for W and a value for b, which, taken together, minimize L

We can still use gradient descent though!

Only now, instead of following the **derivative** $\frac{dL}{dW}$ of L with respect to W to the bottom...

We now follow a **vector** composed of the partial derivates of L with respect to W and b: $\left(\frac{\partial L}{\partial W}, \frac{\partial L}{\partial b}\right)$

We call this vector the **gradient** of L with respect to W and b, and usually denote it with the Δ symbol, e.g. $\Delta_L(W,b)$

Gradient descent

Gradient descent is the method by which all neural nets are trained.

It works* in any situation where it is possible to calculate the gradient of the loss with respect to the model parameters

- $\hat{y} = Wx + b$ has two parameters: *W* and *b*
- ChatGPT has 175 billion parameters
- *: it works more or less well depending on the shape of the loss function.
- If the function is a nice **convex** "bucket", then it will **always** find the global minimum.
- But this is not usually true

Local minima

One issue in gradient descent is "local minima" which are false "dips" the gradient descent can get stuck in.

Saddle points

Another issue is "saddle points" which represent a minimum for one parameter but a maximum for a different one.

The gradient for both can be zero here... but it's not necessarily a very good solution.

Advanced gradient descent

Advanced gradient descent algorithms have various tricks to help them avoid local minima and other issues

Most popular: Adam

- Uses "momentum" to learn adaptive learning rate for each parameter
- Generally the default choice for optimizing any arbitrary neural net

Long story short: just use Adam for everything

• Unless you have a good reason not to

Logistic regression

Logistic regression

Generally in NLP we're more interested in **classification** than regression

• Mapping input x's to a discrete category rather than a continuous value

Linear regression not ideal for this

We can do it hackily with a threshold on the predicted value

• But this has problems

Logistic function

To solve this problem, we are going to wrap our original function, which we will call *f*, in a **logistic function**

$$\sigma(x) = \frac{1}{1 + e^{-x}} \qquad \sigma(f(x)) = \frac{1}{1 + e^{-(Wx+b)}}$$

One nice thing about it is that it is easy to differentiate because of the property that:

$$\frac{d}{dx}\sigma(x) = \sigma(x)(1 - \sigma(x))$$

So if we call our original function *f*:

$$\frac{d}{dx}\sigma(f(x)) = \sigma(f(x))(1 - \sigma(f(x)))f'(x) = W\sigma(Wx + b)(1 - \sigma(Wx + b))$$

https://en.wikipedia.org/wiki/Logistic_function

Logistic regression

So now instead of trying to fit a straight line to the data, we're trying to choose W and b to fit this S-shaped logistic curve to the data

Different choices for W and b change how steep the curve is and where it is centered.

Gradient descent for logistic regression

I won't do the full derivation, but:

- The function we're trying to fit is differentiable
- Which means we can create a differentiable loss function
- Which means we can do gradient descent!

However: mean squared error is not always convex for logistic regression

So we typically use **cross-entropy** loss as our objective:

• Sum across possible classes of true value for that class multiplied by predicted log-probability of that class

$$L(y, \hat{y}) = \sum_{c} y_{c} \log(\hat{y}_{c})$$

More detailed discussion available in Speech and Language Processing chapter 5: <u>https://web.stanford.edu/~jurafsky/slp3/5.pdf</u>

Visualizing linear regression

You can think of linear regression as a vector Or in a graphical form which shows how the operation between matrices of x's, W's and ys individual x's come together to form \hat{y} $\begin{bmatrix} X_{0}^{0} & X_{0}^{1} & X_{0}^{2} & \dots & X_{0}^{N} \\ X_{0}^{0} & X_{0}^{1} & X_{0}^{2} & \dots & X_{0}^{N} \\ \vdots & \vdots & \ddots & \vdots \\ X_{M}^{0} & X_{M}^{1} & X_{M1}^{N} & X_{M1}^{N} \end{bmatrix} \begin{bmatrix} W_{0} \\ W_{0} \\ W_{1} \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \end{bmatrix}$ 120 -X Xn

Visualizing logistic regression

You can do the same thing for logistic regression by adding the σ function

Visualizing logistic regression

When we think of the logistic function as a final step being placed on top of the weighted sum Wx + b in order to squeeze it down to [0,1], then we call it an **activation function**

There are a bunch of activation functions commonly used in neural nets:

• Rectified linear (relu), tanh, etc...

<u>https://pytorch.org/docs/stable/nn.html#non-linear-</u> <u>activations-weighted-sum-nonlinearity</u>

But logistic is the classic one

Linear vs logistic regression in practice

Read the SST-2 dataset

	isplay(dev_df) sentence	label			
		Taper			
0	it 's a charming and often affecting journey .	1			
1	unflinchingly bleak and desperate				
2					
3					
4	it 's slow very , very slow .	0			
867	has all the depth of a wading pool.				
868	a movie with a real anarchic flair .				
869	a subject like this should inspire reaction in				
870	0 is an arthritic attempt at directing by ca 0				
871	looking aristocratic , luminous yet careworn i	1			
872 rows × 2 columns					

Preprocessing and vectorizing the data

<pre>1 # SST-2 is actually already lowercased and tokenized, but it's good to get in 2 # the habit of always doing these during preprocessing 3 stemmer = PorterStemmer() 4 def preprocess(s): 5 return ' '.join([stemmer.stem(token) for token in word_tokenize(s.lower())])</pre>						
<pre>1 train_df['preprocessed'] = train_df['sentence'].apply(preprocess) 2 dev_df['preprocessed'] = dev_df['sentence'].apply(preprocess)</pre>						
1 display(dev_df)						
	sentence	label	preprocessed			
0	it 's a charming and often affecting journey .	1	it 's a charm and often affect journey .			
1	unflinchingly bleak and desperate	0	unflinchingli bleak and desper			
2	allows us to hope that notan is poised to $\ensuremath{emba}\xspace$	1	allow us to hope that notan is pois to embark \ldots			
3	the acting , costumes , music , cinematography	1	the act , costum , music , cinematographi and \ldots			
4	it 's slow very , very slow .	0	it 's slow veri , veri slow .			
867	has all the depth of a wading pool .	0	ha all the depth of a wade pool .			
868	a movie with a real anarchic flair .	1	a movi with a real anarch flair .			
869	a subject like this should inspire reaction in	0	a subject like thi should inspir reaction in i			
870	is an arthritic attempt at directing by ca	0	is an arthrit attempt at direct by calli k			
871	looking aristocratic , luminous yet careworn i	1	look aristocrat , lumin yet careworn in jane h			
872 ro	872 rows × 3 columns					

Preprocessing and vectorizing the data

1 from sklearn.feature_extraction.text import CountVectorizer

1 vectorizer = CountVectorizer()

2 train_X = vectorizer.fit_transform(train_df['preprocessed'])
3 display(train_X)

<67349x10106 sparse matrix of type '<class 'numpy.int64'>' with 535539 stored elements in Compressed Sparse Row format>

1 dev_X = vectorizer.transform(dev_df['preprocessed'])
2 display(dev_X)

<872x10106 sparse matrix of type '<class 'numpy.int64'>'
with 12939 stored elements in Compressed Sparse Row format>

Linear regression - Training

1 from sklearn.linear_model import LinearRegression

```
1 # As with most cases, it's very easy to instantiate and train a linear regression model
2 # in scikit-learn
3
4 # Note: SST-2 is NOT a regression task. It is a classification task.
5
6 # However, because the label is either 0 or 1, we can still sort of treat it as
7 # a regression task, by treating those as target values for the model.
8
9 # This only works for ordinal classification tasks, where there's an easy
10 # way of converting from labels to numbers
11
12 lin_reg_model = LinearRegression()
13 lin_reg_model.fit(train_X, train_df['label'])
```

LinearRegression()

Linear regression - Training

<pre>1 # Notice that because it is a regression model, the predictions are continuous 2 # values that aren't necessarily bounded between 0 and 1 3 train_df['lin_reg_prediction'] = lin_reg_model.predict(train_X) 4 dev_df['lin_reg_prediction'] = lin_reg_model.predict(dev_X) 5 6 display(dev_df)</pre>						
	sentence	label	preprocessed	lin_reg_prediction		
0	it 's a charming and often affecting journey .	1	it 's a charm and often affect journey .	1.156662		
1	unflinchingly bleak and desperate	0	unflinchingli bleak and desper	-0.069508		
2	allows us to hope that nolan is poised to emba	1	allow us to hope that notan is pois to embark \ldots	0.919836		
3	the acting , costumes , music , cinematography	1	the act , costum , music , cinematographi and \ldots	0.934645		
4	it 's slow very , very slow .	0	it 's slow veri , veri slow .	0.031911		
867	has all the depth of a wading pool .	0	ha all the depth of a wade pool .	0.514821		
868	a movie with a real anarchic flair .	1	a movi with a real anarch flair .	1.922209		
869	a subject like this should inspire reaction in	0	a subject like thi should inspir reaction in i	0.914590		
870	is an arthritic attempt at directing by ca	0	is an arthrit attempt at direct by calli k	0.326833		
871	looking aristocratic , luminous yet careworn i	1	look aristocrat , lumin yet careworn in jane h	0.098285		
872 rows × 4 columns						

Linear regression - Evaluation

```
1 # We can't use classification metrics when we do regression, because those only work
 2 # for discrete categorical values
 4 # Instead, we measure the average discrepancy between target value and true value
 5 # The two most common metrics are mean squared error (MSE) and mean absolute error (MAE)
 7 from sklearn.metrics import mean squared error, mean absolute error
 9 def evaluate regression(y, py):
   print(f'Mean squared error: {mean squared error(y,py):.3f}')
10
11 print(f'Mean absolute error: {mean absolute error(y,py):.3f}')
 1 # Smaller values are better. Notice how overfitted we are to the training data
 2
 3 print('Train linear regression results:')
 4 evaluate regression(train df['label'], train df['lin reg prediction'])
 5 print('\nDev linear regression results:')
 6 evaluate regression(dev df['label'], dev df['lin reg prediction'])
Train linear regression results:
Mean squared error: 0.078
Mean absolute error: 0.219
Dev linear regression results:
Mean squared error: 0.389
Mean absolute error: 0.472
```


Linear regression - Evaluation

```
1 from sklearn.metrics import accuracy score, precision score, recall score, f1 score
 2 import numpy as np
 3
 4 # 0.5 is a reasonable value for the threshold in this circumstance
 5 def evaluate thresholded regression(y, py, threshold=0.5):
 6
    # Numpy vectors/pandas Series can be compared to scalars, producing a bool
    # vector, which the classification metric functions can handle
    t y = (y \ge threshold)
 9
    t_py = (py \ge threshold)
10
11
12
    print(f'Accuracy: {accuracy score(t y, t py):.3f}')
13 print(f'Precision: {precision score(t y, t py):.3f}')
    print(f'Recall: {recall score(t y, t py):.3f}')
14
15 print(f'F1: {f1 score(t y, t py):.3f}')
1 # We were doing better with Naive Bayes a couple weeks ago.
 2 print('Thresholded train linear regression results:')
 3 evaluate_thresholded_regression(train_df['label'], train_df['lin_reg_prediction'])
 4 print('\nThresholded dev linear regression results:')
5 evaluate thresholded regression(dev df['label'], dev df['lin reg prediction'])
Thresholded train linear regression results:
Accuracy: 0.927
Precision: 0.919
Recall: 0.953
F1: 0.936
Thresholded dev linear regression results:
Accuracy: 0.744
Precision: 0.735
Recall: 0.779
F1: 0.756
```


Linear regression - Global explanations

```
5 def explain_binary_linear_model(model, vocabulary, k=10):
    # This is necessary because the coefs for logistic regression can be a 2D matrix
    # (though they won't be in this notebook)
    model coefs = np.squeeze(model.coef )
    sorted coef indices = np.argsort(np.abs(model coefs))
   # Grab the indices of the top k indices and flip their order to descending
10
   top k indices = sorted coef indices[:-k:-1]
11
   # Numpy vectors can be indexed by multiple indices at once
12
   top k coefs = model coefs[top k indices]
13
   # Python lists aren't so flexible, so we have to use a comprehension
14
    top k words = [vocabulary[index] for index in top k indices]
15
    for word, coef in zip(top k words, top k coefs):
16
      print(f'\tWord: {word} - Coef: {coef:.3f}')
17
1 # These words make... a lot less sense than the ones we got back for Naive Bayes
 2 # Why might that be?
 3 print(f'Top 10 coefficients in our linear regression model:')
 4 explain binary linear model(lin reg model, vocabulary)
Top 10 coefficients in our linear regression model:
        Word: edmund - Coef: -2.093
        Word: embed - Coef: 1.660
        Word: schtick - Coef: 1.619
        Word: interchang - Coef: 1.581
       Word: drung - Coef: 1.561
        Word: purgatori - Coef: -1.548
        Word: size - Coef: -1.380
        Word: wire - Coef: 1.357
        Word: kangaroo - Coef: -1.353
```


"Kangaroo" and "Edmund"

"Kangaroo"

"Edmund"

???

Linear regression – Local explanations

1 # We can also generate explanations for individual predictions using similar logic 2 3 def explain binary linear model prediction(input,model, vectorizor): 4 # This is necessary because the coefs for logistic regression can be a 2D matrix # (though they won't be in this notebook) 6 model coefs = np.squeeze(model.coef) 8 # Assume the input hasn't been preprocessed, so do that and then vectorize it 9 preprocessed = preprocess(input) 10 tokens = preprocessed.split(' ') 11 input X = vectorizer.transform([preprocessed]) 12 13 py = model.predict(input_X)[0] 14 print(f'Prediction: {py}') 15 16 print(f'Word coefficients:') 17 for token in tokens: 18 if token in vectorizer.vocabulary : # Skip any tokens that are not in the vectorizer vocab 19 token index = vectorizer.vocabulary [token] 20 21 token_coef = model_coefs[token_index] print(f'\tWord: {token} - Coef: {token coef:.3f}') 22 23 print(f'Model intercept: {model.intercept }') 24

Linear regression – Local explanations

1 # We can see in this example that the prediction is just below 0.5 2 # "poorly" is considered much more negative than "well" was positive, 3 # but the high intercept almost pushes the total sum above 0.5 Δ 5 explain_binary_linear_model_prediction('the movie was well written but poorly acted.', lin reg model, 6 vectorizer) Prediction: 0.47644153366011277 Word coefficients: Word: the - Coef: -0.005 Word: movi - Coef: 0.002 Word: wa - Coef: -0.079 Word: well - Coef: 0.161 Word: written - Coef: 0.087 Word: but - Coef: 0.047 Word: poorli - Coef: -0.337 Word: act - Coef: -0.001 Model intercept: 0.6021082139311205

Binary logistic regression – Training

1 from sklearn.linear_model import LogisticRegression

1 log_reg_model = LogisticRegression()
2 log_reg_model.fit(train_X, train_df['label'])

```
/usr/local/lib/python3.8/dist-packages/sklearn/linear_model/_logistic.py:814: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
```

Increase the number of iterations (max_iter) or scale the data as shown in: <u>https://scikit-learn.org/stable/modules/preprocessing.html</u> Please also refer to the documentation for alternative solver options: <u>https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression</u> n_iter_i = _check_optimize_result(LogisticRegression()

Linear regression – Training

1 train_df['log_reg_prediction'] = log_reg_model.predict(train_X)
2 dev_df['log_reg_prediction'] = log_reg_model.predict(dev_X)
3
4 display(dev_df)

	sentence	label	preprocessed	lin_reg_prediction	log_reg_prediction
0	it 's a charming and often affecting journey .	1	it 's a charm and often affect journey .	1.156662	1
1	unflinchingly bleak and desperate	0	unflinchingli bleak and desper	-0.069508	0
2	allows us to hope that nolan is poised to emba	1	allow us to hope that notan is pois to embark \ldots	0.919836	1
3	the acting , costumes , music , cinematography	1	the act , costum , music , cinematographi and \ldots	0.934645	1
4	it 's slow very , very slow .	0	it 's slow veri , veri slow .	0.031911	0
867	has all the depth of a wading pool .	0	ha all the depth of a wade pool .	0.514821	0
868	a movie with a real anarchic flair .	1	a movi with a real anarch flair .	1.922209	1
869	a subject like this should inspire reaction in	0	a subject like thi should inspir reaction in i	0.914590	0
870	is an arthritic attempt at directing by ca	0	is an arthrit attempt at direct by calli k	0.326833	0
871	looking aristocratic , luminous yet careworn i	1	look aristocrat , lumin yet careworn in jane h	0.098285	1
872 rows × 5 columns					

Logistic regression – Evaluation


```
2 # just use the classification metrics as-is
```

```
3 def evaluate_classification(y, py):
```

- 4 print(f'Accuracy: {accuracy_score(y, py):.3f}')
- 5 print(f'Precision: {precision_score(y, py):.3f}')
- 6 print(f'Recall: {recall_score(y, py):.3f}')
- 7 print(f'F1: {f1_score(y, py):.3f}')

1 # Looking better! This is pretty similar to what we were getting with Naive Bayes

- 2 # Still some overfitting happening though.
- 3 print('Train logistic regression results:')
- 4 evaluate_classification(train_df['label'], train_df['log_reg_prediction'])
- 5 print('\nDev logistic regression results:')

6 evaluate_classification(dev_df['label'], dev_df['log_reg_prediction'])

Train logistic regression results:	Thresholded train linear regression results:
Accuracy: 0.926	Accuracy: 0.927
Precision: 0.927	Precision: 0.919
Recall: 0.940	Recall: 0.953
F1: 0.934	F1: 0.936
Dev logistic regression results:	Thresholded dev linear regression results:
Accuracy: 0.808	Accuracy: 0.744
Precision: 0.794	Precision: 0.735
Recall: 0.842	Recall: 0.779
F1: 0.817	F1: 0.756

Logistic regression – global explanations

1 # These look better

2 print(f'Top 10 coefficients in our logistic regression model:')
3 explain binary linear model(log reg model, vocabulary)

Top 10 coefficients in our logistic regression model: Word: lack - Coef: -4.389 Word: worst - Coef: -4.069 Word: anatom - Coef: 4.015 Word: devoid - Coef: -3.871 Word: failur - Coef: -3.703 Word: refresh - Coef: 3.654 Word: stupid - Coef: -3.521 Word: assum - Coef: -3.437 Word: mess - Coef: -3.407

Logistic regression – Local explanations

1 # We can explain individual predictions the same way too 2 3 # Interestingly, we see the same effect with "was" as we observed when we 4 # did Naive Bayes 5 explain_binary_linear_model_prediction('the movie was well written but poorly acted.', log reg model, 6 vectorizer) Prediction: 0 Word coefficients: Word: the - Coef: -0.023 Word: movi - Coef: -0.054 Word: wa - Coef: -0.903 Word: well - Coef: 1.488 Word: written - Coef: 0.483 Word: but - Coef: 0.077 Word: poorli - Coef: -2.898 Word: act - Coef: -0.061 Model intercept: [0.36910711]

Concluding thoughts

Linear regression

- Learn Wx + b from data
- Predict continuous values
- Optimize mean squared error

Logistic regression

- Learn $\sigma(Wx + b)$ from data
- Predict (close to) 0 or 1
- Optimize cross-entropy

Key concepts:

- Loss function
 - I.e. objective function
- Gradient of loss with respect to parameters
- Gradient descent
- Activation function

