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Lightning
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Last lecture

PyTorch: Machine learning Legos

Mini-batch gradient descent
e Batch size very important

Training loop
» Key elements: optimizer.zero_grad(), train_loss.backward(), optimizer.step()

Avoid overfitting by:
* Regularization
* Early stopping



Feedforward neural nets

We’ve been working with models that look like this:




Feedforward neural nets

But what about models that look like this:
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Feedforward neural nets

Or like this:



Feedforward neural nets




Feed-forward neural nets

AKA “Multi-layer perception” (MLP)
Composed of multiple layers of parameters of size [input size x output size]
Original input tensor gets passed through layers one by one

Easy to express as a series of linear algebra matrix multiplications
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Why use FFNs? @

By mixing and mashing the input values together, feedforward neural nets can learn more
complicated functions for mapping the input X to the output y 2 = XOR(x, y)

« Example: XOR logical function
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More generally, FFNs can model interactions between features

* E.g, ““‘Jerk’is usually predictive of toxicity, but not if the word
‘chicken’ is present.”

Perceptron

Neural nets being able to model nonlinear functions is why they
outperform other methods

* Ifyou can get the training to work

https://en.wikipedia.org/wiki/Feedforward_neural_network

More layers is the “deep” in “deep learning”



Gradients for FFNs @

It’s relatively straightforward to calculate loss-parameter gradients for linear functions,
because they decompose nicely into individual pieces that we can consider one at a time
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Gradients for FFNs

But what about when everything now depends on everything?
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Backpropagation @

A
Algorithm for propagating gradients backward from the end of O —Y

a neural net to the beginning O / \O

Makes use of the chain rule; dz — dz . dy ]
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Backpropagation

Key things to remember:

* Feedforward neural nets become math spaghetti... but
they are still ultimately differentiable

* Backpropagation traces the spaghetti from the top to the
: y .
bottom to figure out Fo for any arbitrary parameter w

* Pytorch does all the heavy lifting for you when you call
loss.backward()

* BUT: the deeper down the parameter, the weaker the
gradients are

* Sotraining tends to hit top-level layers harder than
bottom-level layers



Auto-differentiation in PyTorch @

PyTorch implements backpropagation by:
* Tracking layer-to-layer gradients as operations are performed in the neural net

* Applying backpropagation algorithm to obtain layer-to-loss gradients when you call
loss.backward()

* Major source of memory leaks in PyTorch
This is why it is important to:

* Wrap PyTorch operations in with torch.no_grad() when you aren’t going to do training
« Zero the existing gradients before each training step
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Logits and softmax @

Prior to now, I’ve demonstrated binary Example of logits for logistic regression
models that spit out a single scalar logit,
which is then passed through a logistic WOUT 0G\T k¥ -HOT
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More typical is for the final layer of model 2.0 o-T C‘fsfao?‘f

(called the output layer) to spit out a i —
vector of logits, one for each possible LA v) |e-2| D, )| °°
class, which then get passed through a

softmax function so that they sum to one.

» So each final output value represents
the probability of that class
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https://www.ritchieng.com/machine-learning/deep-learning/neural-nets/
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GPU operations and feedforward
neural nets

80

Code description

Reading and preprocessing SST-2 as
usual

Creating PyTorch Dataset and
DatalLoader for SST-2

Demonstration of GPU operations
Architecture of feedforward neural net
Manual training of the new model

Notebook headings

Reading and preprocessing SST-2
dataset

Dataset and DatalLoader
GPU operations
Feedforward model

Manual training loop with GPU
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Pytorch Lightning @

My screwup with optimizer.zero_grad()—unintentional lesson on the dangers of writing
your own training loop

Pytorch Lightning: prefabricated training loops for PyTorch models
Requires slightly more complicated model code, but makes training loop one line
Two key elements:

* LightningModule - all models have to extend this
* Trainer - used to run the training loop
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LightningModule

Subclass of torch.nn.Module

Includes:

 __init__(): defines structure

« forward(): passes input through model to make output

* Trainer hooks: get called by the Trainer object at different points in the training

configure_optimizers(): initializes optimizer(s)

training_step(): calculates training loss and returns it to Trainer
train_epoch_end(): called at end of training epoch for e.g. calculating accuracy
validation_step(): calculates validation loss and returns it to Trainer
validation_epoch_end(): called at end of validation epoch

...and tons more: https://pytorch-
lightning.readthedocs.io/en/stable/starter/introduction.html
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https://pytorch-lightning.readthedocs.io/en/stable/starter/introduction.html
https://pytorch-lightning.readthedocs.io/en/stable/starter/introduction.html

PyTorch Lightning models

80

Code description Notebook headings
* Installing a needed Python package Pytorch Lightning
* Demonstration of how to write a LightningModule model

PyTorch Lightning-compatible model
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Trainer @

Pytorch Lightning Trainer is an object that takes in a LightningModule and a couple of
PyTorch DatalLoaders (train and validation), and trains the LightningModule

Hugely powerful, tons of functionality:

« Early stopping

* Logging

» Different dev set evaluation intervals (every 0.25 epochs, every 500 steps, etc.)

« GPUvsCPU
« ...and soon. You definitely want to check out the docs if you are going to use PL

https://pytorch-lightning.readthedocs.io/en/stable/common/trainer.html
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https://pytorch-lightning.readthedocs.io/en/stable/common/trainer.html

PyTorch Lightning training

CO

Code description Notebook headings

* Demonstration of the creation and use of Trainer
a PyTorch Lightning Trainer
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Concluding thoughts

New concepts
» Feedforward neural nets
» Concept of a “layer” of a neural net architecture
* Backpropagation
* GPU operations on tensors
* Training on GPU
* Pytorch Lightning
* LightningModule
* Trainer
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