Feedforward Neural Nets and PyTorch
Lightning

CS 759/859 Natural Language Processing Lecture 9

Samuel Carton, University of New Hampshire

Last lecture

PyTorch: Machine learning Legos

Mini-batch gradient descent
e Batch size very important

Training loop
» Key elements: optimizer.zero_grad(), train_loss.backward(), optimizer.step()

Avoid overfitting by:
* Regularization
* Early stopping

Feedforward neural nets

We’ve been working with models that look like this:

Feedforward neural nets

But what about models that look like this:

N

\.j

1~
@,

s

K !

\/\o
\WI é,\,
A S

Feedforward neural nets

Or like this:

Feedforward neural nets

Feed-forward neural nets

AKA “Multi-layer perception” (MLP)
Composed of multiple layers of parameters of size [input size x output size]
Original input tensor gets passed through layers one by one

Easy to express as a series of linear algebra matrix multiplications

BRERE,

b N NxS, S.x5, 916, S,xC bx (

Why use FFNs? @

By mixing and mashing the input values together, feedforward neural nets can learn more
complicated functions for mapping the input X to the output y 2 = XOR(x, y)

« Example: XOR logical function

Oulput

®

Input

More generally, FFNs can model interactions between features

* E.g, ““‘Jerk’is usually predictive of toxicity, but not if the word
‘chicken’ is present.”

Perceptron

Neural nets being able to model nonlinear functions is why they
outperform other methods

* Ifyou can get the training to work

https://en.wikipedia.org/wiki/Feedforward_neural_network

More layers is the “deep” in “deep learning”

Gradients for FFNs @

It’s relatively straightforward to calculate loss-parameter gradients for linear functions,
because they decompose nicely into individual pieces that we can consider one at a time

\//\ 9 = a(WyXy + WXy + WoXy + -+ WyXy + b)
i
9 _ d
@ oW, W, o (WoXo)
W, / Wy
v/ W

‘\’Hmsll \\C‘(“ \\’l}[” gbl'j./)

10

Gradients for FFNs

But what about when everything now depends on everything?

A
g — 7

= 0(0gh{ + 0,h
O O/\O’ (01;1)10 1,0 1,0 1,0 140
= (0o (Woohd +Wioh? +W3sh3) + 0y (Woy hg+Wi h{+ W51 h3))

] =0'(00(W010(W000X0+W10x +W200x2 +°"+W1\(I)OXN)+"')+"'

uyyﬂk ay

—???

V/
%I ><7, .
oy o \br” ngW?

11

Backpropagation @

A
Algorithm for propagating gradients backward from the end of O —Y

a neural net to the beginning O / \O

Makes use of the chain rule; dz — dz . dy]

dr dy dx \A/
W yﬁtk
99 09 00, 09 90,

= +
oWy, 00y 0Ws 00, Wy
_ 0y (aOO OWso .~ 00y Wi, 00, 0W210>+ V /A

+ + ‘
00, \owd awe " awk awd " awl aw % X

‘\+. \;}Z /1 gvlﬁ'ﬂ

12

Backpropagation

Key things to remember:

* Feedforward neural nets become math spaghetti... but
they are still ultimately differentiable

* Backpropagation traces the spaghetti from the top to the
: y .
bottom to figure out Fo for any arbitrary parameter w

* Pytorch does all the heavy lifting for you when you call
loss.backward()

* BUT: the deeper down the parameter, the weaker the
gradients are

* Sotraining tends to hit top-level layers harder than
bottom-level layers

Auto-differentiation in PyTorch @

PyTorch implements backpropagation by:
* Tracking layer-to-layer gradients as operations are performed in the neural net

* Applying backpropagation algorithm to obtain layer-to-loss gradients when you call
loss.backward()

* Major source of memory leaks in PyTorch
This is why it is important to:

* Wrap PyTorch operations in with torch.no_grad() when you aren’t going to do training
« Zero the existing gradients before each training step

14

Logits and softmax @

Prior to now, I’ve demonstrated binary Example of logits for logistic regression
models that spit out a single scalar logit,
which is then passed through a logistic WOUT 0G\T k¥ -HOT

. & L 20 \aBe
function to be squeezed to between0and1 %) 0 — ';ﬁ““s

. b 4 b
\)NE'*LR Y '
.. . AodE 65" -0

More typical is for the final layer of model 2.0 o-T C‘fsfao?‘f

(called the output layer) to spit out a i —
vector of logits, one for each possible LA v) |e-2| D,)| °°
class, which then get passed through a

softmax function so that they sum to one.

» So each final output value represents
the probability of that class

0.l 0.0

o.l

https://www.ritchieng.com/machine-learning/deep-learning/neural-nets/

15

GPU operations and feedforward
neural nets

80

Code description

Reading and preprocessing SST-2 as
usual

Creating PyTorch Dataset and
DatalLoader for SST-2

Demonstration of GPU operations
Architecture of feedforward neural net
Manual training of the new model

Notebook headings

Reading and preprocessing SST-2
dataset

Dataset and DatalLoader
GPU operations
Feedforward model

Manual training loop with GPU

16

Pytorch Lightning @

My screwup with optimizer.zero_grad()—unintentional lesson on the dangers of writing
your own training loop

Pytorch Lightning: prefabricated training loops for PyTorch models
Requires slightly more complicated model code, but makes training loop one line
Two key elements:

* LightningModule - all models have to extend this
* Trainer - used to run the training loop

24

LightningModule

Subclass of torch.nn.Module

Includes:

 __init__(): defines structure

« forward(): passes input through model to make output

* Trainer hooks: get called by the Trainer object at different points in the training

configure_optimizers(): initializes optimizer(s)

training_step(): calculates training loss and returns it to Trainer
train_epoch_end(): called at end of training epoch for e.g. calculating accuracy
validation_step(): calculates validation loss and returns it to Trainer
validation_epoch_end(): called at end of validation epoch

...and tons more: https://pytorch-
lightning.readthedocs.io/en/stable/starter/introduction.html

25

https://pytorch-lightning.readthedocs.io/en/stable/starter/introduction.html
https://pytorch-lightning.readthedocs.io/en/stable/starter/introduction.html

PyTorch Lightning models

80

Code description Notebook headings
* Installing a needed Python package Pytorch Lightning
* Demonstration of how to write a LightningModule model

PyTorch Lightning-compatible model

26

Trainer @

Pytorch Lightning Trainer is an object that takes in a LightningModule and a couple of
PyTorch DatalLoaders (train and validation), and trains the LightningModule

Hugely powerful, tons of functionality:

« Early stopping

* Logging

» Different dev set evaluation intervals (every 0.25 epochs, every 500 steps, etc.)

« GPUvsCPU
« ...and soon. You definitely want to check out the docs if you are going to use PL

https://pytorch-lightning.readthedocs.io/en/stable/common/trainer.html

30

https://pytorch-lightning.readthedocs.io/en/stable/common/trainer.html

PyTorch Lightning training

CO

Code description Notebook headings

* Demonstration of the creation and use of Trainer
a PyTorch Lightning Trainer

31

Concluding thoughts

New concepts
» Feedforward neural nets
» Concept of a “layer” of a neural net architecture
* Backpropagation
* GPU operations on tensors
* Training on GPU
* Pytorch Lightning
* LightningModule
* Trainer

34

	Slide 1: Feedforward Neural Nets and PyTorch Lightning
	Slide 2: Last lecture
	Slide 4: Feedforward neural nets
	Slide 5: Feedforward neural nets
	Slide 6: Feedforward neural nets
	Slide 7: Feedforward neural nets
	Slide 8: Feed-forward neural nets
	Slide 9: Why use FFNs?
	Slide 10: Gradients for FFNs
	Slide 11: Gradients for FFNs
	Slide 12: Backpropagation
	Slide 13: Backpropagation
	Slide 14: Auto-differentiation in PyTorch
	Slide 15: Logits and softmax
	Slide 16: GPU operations and feedforward neural nets
	Slide 24: Pytorch Lightning
	Slide 25: LightningModule
	Slide 26: PyTorch Lightning models
	Slide 30: Trainer
	Slide 31: PyTorch Lightning training
	Slide 34: Concluding thoughts

