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Last lecture

PyTorch: Machine learning Legos

Mini-batch gradient descent

• Batch size very important

Training loop

• Key elements: optimizer.zero_grad(), train_loss.backward(), optimizer.step()

Avoid overfitting by:

• Regularization

• Early stopping
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Feedforward neural nets

We’ve been working with models that look like this:
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Feedforward neural nets

But what about models that look like this:
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Feedforward neural nets

Or like this:
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Feedforward neural nets

Or…
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Feed-forward neural nets

AKA “Multi-layer perception” (MLP)

Composed of multiple layers of parameters of size [input size x output size]

Original input tensor gets passed through layers one by one

Easy to express as a series of linear algebra matrix multiplications
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Why use FFNs?

By mixing and mashing the input values together, feedforward neural nets can learn more 
complicated functions for mapping the input 𝑋 to the output ො𝑦

• Example: XOR logical function

More generally, FFNs can model interactions between features

• E.g, “‘Jerk’ is usually predictive of toxicity, but not if the word
‘chicken’ is present.”

Neural nets being able to model nonlinear functions is why they
outperform other methods

• If you can get the training to work

More layers is the “deep” in “deep learning”
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https://en.wikipedia.org/wiki/Feedforward_neural_network



Gradients for FFNs

It’s relatively straightforward to calculate loss-parameter gradients for linear functions, 
because they decompose nicely into individual pieces that we can consider one at a time
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Gradients for FFNs

But what about when everything now depends on everything?
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Backpropagation

Algorithm for propagating gradients backward from the end of 
a neural net to the beginning

Makes use of the chain rule:
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Backpropagation

Key things to remember:

• Feedforward neural nets become math spaghetti… but 
they are still ultimately differentiable

• Backpropagation traces the spaghetti from the top to the 
bottom to figure out 

𝜕 ො𝑦

𝜕𝑤
 for any arbitrary parameter 𝑤

• Pytorch does all the heavy lifting for you when you call 
loss.backward()

• BUT: the deeper down the parameter, the weaker the 
gradients are

• So training tends to hit top-level layers harder than 
bottom-level layers
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Auto-differentiation in PyTorch

PyTorch implements backpropagation by:

• Tracking layer-to-layer gradients as operations are performed in the neural net

• Applying backpropagation algorithm to obtain layer-to-loss gradients when you call 
loss.backward()

And these gradients get stored in GPU memory!!!!!!

• Major source of memory leaks in PyTorch

This is why it is important to:

• Wrap PyTorch operations in with torch.no_grad() when you aren’t going to do training

• Zero the existing gradients before each training step
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Logits and softmax

Prior to now, I’ve demonstrated binary 
models that spit out a single scalar logit, 
which is then passed through a logistic 
function to be squeezed to between 0 and 1

More typical is for the final layer of model 
(called the output layer) to spit out a 
vector of logits, one for each possible 
class, which then get passed through a 
softmax function so that they sum to one. 

• So each final output value represents 
the probability of that class
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https://www.ritchieng.com/machine-learning/deep-learning/neural-nets/

Example of logits for logistic regression



Code description Notebook headings

GPU operations and feedforward 
neural nets
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• Reading and preprocessing SST-2 as 
usual

• Creating PyTorch Dataset and 
DataLoader for SST-2

• Demonstration of GPU operations

• Architecture of feedforward neural net 

• Manual training of the new model



Pytorch Lightning

My screwup with optimizer.zero_grad()—unintentional lesson on the dangers of writing 
your own training loop

Pytorch Lightning: prefabricated training loops for PyTorch models

Requires slightly more complicated model code, but makes training loop one line

Two key elements:

• LightningModule – all models have to extend this

• Trainer – used to run the training loop
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LightningModule

Subclass of torch.nn.Module

Includes:

• __init__(): defines structure

• forward(): passes input through model to make output

• Trainer hooks: get called by the Trainer object at different points in the training

• configure_optimizers(): initializes optimizer(s)

• training_step(): calculates training loss and returns it to Trainer

• train_epoch_end(): called at end of training epoch for e.g. calculating accuracy

• validation_step(): calculates validation loss and returns it to Trainer

• validation_epoch_end(): called at end of validation epoch

• …and tons more: https://pytorch-
lightning.readthedocs.io/en/stable/starter/introduction.html
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https://pytorch-lightning.readthedocs.io/en/stable/starter/introduction.html
https://pytorch-lightning.readthedocs.io/en/stable/starter/introduction.html


Code description Notebook headings

PyTorch Lightning models
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• Installing a needed Python package

• Demonstration of how to write a 
PyTorch Lightning-compatible model



Trainer

Pytorch Lightning Trainer is an object that takes in a LightningModule and a couple of 
PyTorch DataLoaders (train and validation), and trains the LightningModule

Hugely powerful, tons of functionality:

• Early stopping

• Logging

• Different dev set evaluation intervals (every 0.25 epochs, every 500 steps, etc.)

• GPU vs CPU

• …and so on. You definitely want to check out the docs if you are going to use PL

https://pytorch-lightning.readthedocs.io/en/stable/common/trainer.html
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https://pytorch-lightning.readthedocs.io/en/stable/common/trainer.html


Code description Notebook headings

PyTorch Lightning training

31

• Demonstration of the creation and use of 
a PyTorch Lightning Trainer



Concluding thoughts

New concepts

• Feedforward neural nets

• Concept of a “layer” of a neural net architecture

• Backpropagation

• GPU operations on tensors

• Training on GPU

• Pytorch Lightning

• LightningModule

• Trainer
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