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Last lecture
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Key idea: Dimension reduction

Concepts

• Dimensionality of data

• Variance of data

• Principle components

• Matrix factorization

• SVD and PCA

• Application to clustering

Toolkits

• Scikit-learn for SVD



Parametric 
classification



Parametric classification

With the K-nearest neighbor classifier, we learned how to take a big pile of training vectors 
X with known labels y, and use them to classify an unknown vector x with some prediction 
ො𝑦.

But all we’re really doing there is putting the training vectors in a pile, and running a 
nearest-neighbor search over them for each new 𝑥

• Very inefficient

Wouldn’t it be nice if we could learn some mathematical formula from the training data 
which could just take in a vector and directly spit out a prediction, without having to go 
over all the data every time?
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Toy dataset

Goal: Can we come up with some vector w, with one number per word, where if we take 
the dot product of w and each vector, we get something close to the true label?
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Manual parameters/predictions

Intuitive idea: put a 1 on the words we know are positive, and a -1 
on the ones we know are negative. 

But how to squeeze the predictions to between 0 and 1?
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Logistic function

To solve this problem, we are going to wrap our 
original function, which we will call f, in a logistic 
function

One nice thing about it is that it is easy to differentiate 
because of the property that:

So if we call our original function f:
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https://en.wikipedia.org/wiki/Logistic_function

𝜎 𝑥 =
1

1 + 𝑒−𝑥

𝑑

𝑑𝑥
𝜎 𝑥 = 𝜎(𝑥)(1 − 𝜎(𝑥))

𝑑

𝑑𝑥
𝜎 𝑓(𝑥) = 𝜎 𝑓(𝑥) 1 − 𝜎 𝑓(𝑥) 𝑓′ 𝑥 = 𝑊𝜎(𝑊𝑥 + 𝑏)(1 − 𝜎(𝑊𝑥 + 𝑏))

𝜎 𝑓(𝑥) =
1

1 + 𝑒−(𝑊𝑥+𝑏)



Sigmoid-ed manual predictions

Looking a lot better, but could we have learned this automatically from the data?
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Linear 
regression



Linear regression

Basic idea: given some points in N-dimensional space, 
find a “line of best fit” that is as close as possible to 
those points.

When the points are text:

• N = vocabulary size

• Examples:

• Grading essays 0-100

• Scoring text complexity
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Linear regression

Mathematically, what we’re trying to do is figure out 
some function:

 ො𝑦 = 𝑊𝑥 + 𝑏

…where W and b are values such that ො𝑦 tends to be 
close to y for any given x.

Very common in ML to refer to predicted output as ො𝑦 and 
true output as y. 
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Loss function

We generally articulate this goal with a loss function 
that describes the value we’re trying to minimize with 
our choice of W and b. 

AKA “Objective function”

It’s very typical to minimize squared loss between 
expected and true output:

That would give us a loss function of:
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𝐿 𝑊, 𝑏 = σ𝑖 ො𝑦𝑖 − 𝑦𝑖
2

= ො𝑦0 − 𝑦0
2 + ො𝑦1 − 𝑦1

2 + ො𝑦2 − 𝑦2
2

= 𝑊𝑥0 + 𝑏 − 𝑦0
2 + 𝑊𝑥1 + 𝑏 − 𝑦1

2 + 𝑊𝑥2 + 𝑏 − 𝑦2
2



𝑖

ො𝑦𝑖 − 𝑦𝑖
2



Simple example

To show how we can solve this, I’ll use a simple example 
with no intercept (b)

So the loss function is:
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= ො𝑦0 − 𝑦0
2 + ො𝑦1 − 𝑦1

2 + ො𝑦2 − 𝑦2
2

= 𝑊𝑥0 − 𝑦0
2 + 𝑊𝑥1 − 𝑦1

2 + 𝑊𝑥2 − 𝑦2
2

= 𝑊2𝑥0
2 − 2𝑊𝑥0𝑦0 + 𝑦0

2

 + 𝑊2𝑥1
2 − 2𝑊𝑥1𝑦1 + 𝑦1

2

 + 𝑊2𝑥2
2 − 2𝑊𝑥2𝑦2 + 𝑦2

2

= 𝑊2 𝑥0
2 + 𝑥1

2 + 𝑥2
2 − 2𝑊 𝑥0𝑦0 + 𝑥1𝑦1 + 𝑥2𝑦2 + (𝑦0

2 + 𝑦1
2 + 𝑦2

2)

𝐿 𝑊, 𝑏 = σ𝑖 ො𝑦𝑖 − 𝑦𝑖
2



Simple example

If the loss function for W is this:
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𝐿 𝑊 = 𝑊2 𝑥0
2 + 𝑥1

2 + 𝑥2
2

 −2𝑊 𝑥0𝑦0 + 𝑥1𝑦1 + 𝑥2𝑦2

 +(𝑦0
2 + 𝑦1

2 + 𝑦2
2)

Then the graph of L as a function of W looks like this:



Simple example

It’s pretty obvious what value of W will 
minimize the loss here.
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Simple example

What may be less obvious is that this also 
happens to be the point where the derivative 
of L with respect to W is 0.

In some sense it is the bottom of a pit.

Gradient descent is the process of gradually 
following the slope of the function down to 
these pit-bottoms
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𝑑𝐿

𝑑𝑊
= 0



Simple example

In the most simple case, we pick a random 
point on the function and find the slope 
(derivative)

Then we move some incremental distance 
in the direction that reduces the value of L 
(left in this case)

This increment that we move each step is 
called the learning rate
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Simple example

Then we calculate the slope again at this 
new point and move one increment in the 
reducing-L direction (still left).
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Simple example

And we keep doing that…
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Simple example

And keep doing that…
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Simple example

Until we hit a point on W where the slope 
seems to have levelled out

That is, 
𝑑𝐿

𝑑𝑊
= 0

And we conclude that we’ve found the value 
of W that minimizes L

Challenge question:

• What if the learning rate is too high?

• What if it is too low?
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Adding back the intercept

So what if our function does have an intercept?
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= ො𝑦0 − 𝑦0
2 + ො𝑦1 − 𝑦1

2 + ො𝑦2 − 𝑦2
2

= 𝑊𝑥0 + 𝑏 − 𝑦0
2 + 𝑊𝑥1 + 𝑏 − 𝑦1

2 + 𝑊𝑥2 + 𝑏 − 𝑦2
2

= 𝑊2𝑥0
2 − 2𝑊𝑥0𝑦0 + 2𝑊𝑏𝑥0 − 𝑏2𝑦0 + 𝑦0

2 + 𝑏2

 + 𝑊2𝑥1
2 − 2𝑊𝑥1𝑦1 + 2𝑊𝑏𝑥1 − 𝑏2𝑦1 + 𝑦1

2 +𝑏2

 + 𝑊2𝑥2
2 − 2𝑊𝑥2𝑦2 + 2𝑊𝑏𝑥2 − 𝑏2𝑦2 + 𝑦2

2 +𝑏2

= 𝑊2 𝑥0
2 + 𝑥1

2 + 𝑥2
2

−2𝑊 𝑥0𝑦0 + 𝑥1𝑦1 + 𝑥2𝑦2

+2𝑊𝑏 𝑥0 + 𝑥1 + 𝑥2

−2𝑏 𝑦0 + 𝑦1 + 𝑦2

+ 𝑦0
2 + 𝑦1

2 + 𝑦2
2

+3𝑏2

𝐿 𝑊, 𝑏 = σ𝑖 ො𝑦𝑖 − 𝑦𝑖
2



Adding back the intercept

So what if our function does have an intercept?

More complicated, but the key thing is that L is still just a 

quadratic function of W and b
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𝐿 𝑊, 𝑏 = 𝑊2 𝑥0
2 + 𝑥1

2 + 𝑥2
2

−2𝑊 𝑥0𝑦0 + 𝑥1𝑦1 + 𝑥2𝑦2

+2𝑊𝑏 𝑥0 + 𝑥1 + 𝑥2

−2𝑏 𝑦0 + 𝑦1 + 𝑦2

+ 𝑦0
2 + 𝑦1

2 + 𝑦2
2

+3𝑏2



Adding back the intercept

So the loss becomes a 2-dimensional function, and 
we’re trying to find a value for W and a value for b, 
which, taken together, minimize L
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Adding back the intercept

We can still use gradient descent though!

Only now, instead of following the derivative
𝑑𝐿

𝑑𝑊
 of L 

with respect to W to the bottom…

We now follow a vector composed of the partial

derivates of L with respect to W and b: 
𝜕𝐿

𝜕𝑊
,

𝜕𝐿

𝜕𝑏

We call this vector the gradient of L with respect to 
W and b, and usually denote it with the Δ symbol, e.g. 
Δ𝐿(W,b)

 

25



Gradient descent

Gradient descent is the method by which all neural nets are trained.

It works* in any situation where it is possible to calculate the gradient of the loss with 
respect to the model parameters

• ො𝑦 = 𝑊𝑥 + 𝑏 has two parameters: W and b

• ChatGPT has 175 billion parameters

*: it works more or less well depending on the shape of the loss function. 

• If the function is a nice convex “bucket”, then it will always find the global minimum.

• But this is not usually true
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Local minima

One issue in gradient descent is “local minima” which 
are false “dips” the gradient descent can get stuck in. 
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Saddle points

Another issue is “saddle points” which represent a 
minimum for one parameter but a maximum for a 
different one. 

The gradient for both can be zero here… but it’s not 
necessarily a very good solution. 
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Advanced gradient descent

Advanced gradient descent algorithms have various tricks to help them avoid local 
minima and other issues

Most popular: Adam

• Uses “momentum” to learn adaptive 
learning rate for each parameter

• Generally the default choice for optimizing
any arbitrary neural net

Long story short: just use Adam for everything

• Unless you have a good reason not to
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Logistic 
regression



Logistic regression

Generally in NLP we’re more interested in 
classification than regression

• Mapping input x’s to a discrete category 
rather than a continuous value

Linear regression not ideal for this

We can do it hackily with a threshold on the 
predicted value

• But this has problems
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Logistic function

To solve this problem, we are going to wrap our 
original function, which we will call f, in a logistic 
function

One nice thing about it is that it is easy to differentiate 
because of the property that:

So if we call our original function f:
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https://en.wikipedia.org/wiki/Logistic_function

𝜎 𝑥 =
1

1 + 𝑒−𝑥

𝑑

𝑑𝑥
𝜎 𝑥 = 𝜎(𝑥)(1 − 𝜎(𝑥))

𝑑

𝑑𝑥
𝜎 𝑓(𝑥) = 𝜎 𝑓(𝑥) 1 − 𝜎 𝑓(𝑥) 𝑓′ 𝑥 = 𝑊𝜎(𝑊𝑥 + 𝑏)(1 − 𝜎(𝑊𝑥 + 𝑏))

𝜎 𝑓(𝑥) =
1

1 + 𝑒−(𝑊𝑥+𝑏)



Logistic regression

So now instead of trying to fit a straight line to 
the data, we’re trying to choose W and b to fit this 
S-shaped logistic curve to the data

Different choices for W and b change how steep 
the curve is and where it is centered.
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Gradient descent for logistic regression

I won’t do the full derivation, but:

• The function we’re trying to fit is differentiable

• Which means we can create a differentiable loss function

• Which means we can do gradient descent!

However: mean squared error is not always convex for logistic regression

So we typically use cross-entropy loss as our objective:  

• Sum across possible classes of true value for that class
multiplied by predicted log-probability of that class

More detailed discussion available in Speech and Language Processing chapter 
5: https://web.stanford.edu/~jurafsky/slp3/5.pdf
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𝐿 𝑦, ො𝑦 = 

𝑐

𝑦𝑐log( ො𝑦𝑐)

https://web.stanford.edu/~jurafsky/slp3/5.pdf


Visualizing linear regression
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You can think of linear regression as a vector 
operation between matrices of x’s, W’s and ys

Or in a graphical form which shows how the 
individual x’s come together to form ො𝑦



Visualizing logistic regression
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You can do the same thing for logistic regression by adding the σ function



Visualizing logistic regression
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https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity

https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity

When we think of the logistic function as a final step being 
placed on top of the weighted sum 𝑊𝑥 + 𝑏 in order to 
squeeze it down to [0,1], then we call it an activation 
function

There are a bunch of activation functions commonly used in 
neural nets:

• Rectified linear (relu), tanh, etc…

https://pytorch.org/docs/stable/nn.html#non-linear-
activations-weighted-sum-nonlinearity 

But logistic is the classic one

https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity
https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity


Linear vs logistic 
regression in 
practice



Code description Notebook headings

Linear regression with Scikit-Learn
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• Read/preprocess SST-2

• Build and evaluate a Scikit-learn linear 
regression model

• Manually inspect some model 
parameters to explain predictions



“Kangaroo” and “Edmund”

“Kangaroo”

“Edmund”                                                                                 ???
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Code description Notebook headings

Logistic regression with Scikit-Learn
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• Example of training, evaluation and 
inspection of a Scikit-Learn logistic 
regression model



Concluding thoughts

Linear regression

• Learn 𝑊𝑥 + 𝑏 from data

• Predict continuous values

• Optimize mean squared error

Logistic regression

• Learn σ(𝑊𝑥 + 𝑏) from data

• Predict (close to) 0 or 1

• Optimize cross-entropy
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Key concepts:

• Loss function

• I.e. objective function

• Gradient of loss with respect to 
parameters

• Gradient descent

• Activation function
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