
Linear and Logistic Regression
CS 759/859 Natural Language Processing Lecture 7

Samuel Carton, University of New Hampshire

Last lecture

2

Key idea: Dimension reduction

Concepts

• Dimensionality of data

• Variance of data

• Principle components

• Matrix factorization

• SVD and PCA

• Application to clustering

Toolkits

• Scikit-learn for SVD

Parametric
classification

Parametric classification

With the K-nearest neighbor classifier, we learned how to take a big pile of training vectors
X with known labels y, and use them to classify an unknown vector x with some prediction
ො𝑦.

But all we’re really doing there is putting the training vectors in a pile, and running a
nearest-neighbor search over them for each new 𝑥

• Very inefficient

Wouldn’t it be nice if we could learn some mathematical formula from the training data
which could just take in a vector and directly spit out a prediction, without having to go
over all the data every time?

4

Toy dataset

Goal: Can we come up with some vector w, with one number per word, where if we take
the dot product of w and each vector, we get something close to the true label?

5

Manual parameters/predictions

Intuitive idea: put a 1 on the words we know are positive, and a -1
on the ones we know are negative.

But how to squeeze the predictions to between 0 and 1?

6

Logistic function

To solve this problem, we are going to wrap our
original function, which we will call f, in a logistic
function

One nice thing about it is that it is easy to differentiate
because of the property that:

So if we call our original function f:

7

https://en.wikipedia.org/wiki/Logistic_function

𝜎 𝑥 =
1

1 + 𝑒−𝑥

𝑑

𝑑𝑥
𝜎 𝑥 = 𝜎(𝑥)(1 − 𝜎(𝑥))

𝑑

𝑑𝑥
𝜎 𝑓(𝑥) = 𝜎 𝑓(𝑥) 1 − 𝜎 𝑓(𝑥) 𝑓′ 𝑥 = 𝑊𝜎(𝑊𝑥 + 𝑏)(1 − 𝜎(𝑊𝑥 + 𝑏))

𝜎 𝑓(𝑥) =
1

1 + 𝑒−(𝑊𝑥+𝑏)

Sigmoid-ed manual predictions

Looking a lot better, but could we have learned this automatically from the data?

8

Linear
regression

Linear regression

Basic idea: given some points in N-dimensional space,
find a “line of best fit” that is as close as possible to
those points.

When the points are text:

• N = vocabulary size

• Examples:

• Grading essays 0-100

• Scoring text complexity

10

Linear regression

Mathematically, what we’re trying to do is figure out
some function:

 ො𝑦 = 𝑊𝑥 + 𝑏

…where W and b are values such that ො𝑦 tends to be
close to y for any given x.

Very common in ML to refer to predicted output as ො𝑦 and
true output as y.

11

Loss function

We generally articulate this goal with a loss function
that describes the value we’re trying to minimize with
our choice of W and b.

AKA “Objective function”

It’s very typical to minimize squared loss between
expected and true output:

That would give us a loss function of:

12

𝐿 𝑊, 𝑏 = σ𝑖 ො𝑦𝑖 − 𝑦𝑖
2

= ො𝑦0 − 𝑦0
2 + ො𝑦1 − 𝑦1

2 + ො𝑦2 − 𝑦2
2

= 𝑊𝑥0 + 𝑏 − 𝑦0
2 + 𝑊𝑥1 + 𝑏 − 𝑦1

2 + 𝑊𝑥2 + 𝑏 − 𝑦2
2

𝑖

ො𝑦𝑖 − 𝑦𝑖
2

Simple example

To show how we can solve this, I’ll use a simple example
with no intercept (b)

So the loss function is:

13

= ො𝑦0 − 𝑦0
2 + ො𝑦1 − 𝑦1

2 + ො𝑦2 − 𝑦2
2

= 𝑊𝑥0 − 𝑦0
2 + 𝑊𝑥1 − 𝑦1

2 + 𝑊𝑥2 − 𝑦2
2

= 𝑊2𝑥0
2 − 2𝑊𝑥0𝑦0 + 𝑦0

2

 + 𝑊2𝑥1
2 − 2𝑊𝑥1𝑦1 + 𝑦1

2

 + 𝑊2𝑥2
2 − 2𝑊𝑥2𝑦2 + 𝑦2

2

= 𝑊2 𝑥0
2 + 𝑥1

2 + 𝑥2
2 − 2𝑊 𝑥0𝑦0 + 𝑥1𝑦1 + 𝑥2𝑦2 + (𝑦0

2 + 𝑦1
2 + 𝑦2

2)

𝐿 𝑊, 𝑏 = σ𝑖 ො𝑦𝑖 − 𝑦𝑖
2

Simple example

If the loss function for W is this:

14

𝐿 𝑊 = 𝑊2 𝑥0
2 + 𝑥1

2 + 𝑥2
2

 −2𝑊 𝑥0𝑦0 + 𝑥1𝑦1 + 𝑥2𝑦2

 +(𝑦0
2 + 𝑦1

2 + 𝑦2
2)

Then the graph of L as a function of W looks like this:

Simple example

It’s pretty obvious what value of W will
minimize the loss here.

15

Simple example

What may be less obvious is that this also
happens to be the point where the derivative
of L with respect to W is 0.

In some sense it is the bottom of a pit.

Gradient descent is the process of gradually
following the slope of the function down to
these pit-bottoms

16

𝑑𝐿

𝑑𝑊
= 0

Simple example

In the most simple case, we pick a random
point on the function and find the slope
(derivative)

Then we move some incremental distance
in the direction that reduces the value of L
(left in this case)

This increment that we move each step is
called the learning rate

17

Simple example

Then we calculate the slope again at this
new point and move one increment in the
reducing-L direction (still left).

18

Simple example

And we keep doing that…

19

Simple example

And keep doing that…

20

Simple example

Until we hit a point on W where the slope
seems to have levelled out

That is,
𝑑𝐿

𝑑𝑊
= 0

And we conclude that we’ve found the value
of W that minimizes L

Challenge question:

• What if the learning rate is too high?

• What if it is too low?

21

Adding back the intercept

So what if our function does have an intercept?

22

= ො𝑦0 − 𝑦0
2 + ො𝑦1 − 𝑦1

2 + ො𝑦2 − 𝑦2
2

= 𝑊𝑥0 + 𝑏 − 𝑦0
2 + 𝑊𝑥1 + 𝑏 − 𝑦1

2 + 𝑊𝑥2 + 𝑏 − 𝑦2
2

= 𝑊2𝑥0
2 − 2𝑊𝑥0𝑦0 + 2𝑊𝑏𝑥0 − 𝑏2𝑦0 + 𝑦0

2 + 𝑏2

 + 𝑊2𝑥1
2 − 2𝑊𝑥1𝑦1 + 2𝑊𝑏𝑥1 − 𝑏2𝑦1 + 𝑦1

2 +𝑏2

 + 𝑊2𝑥2
2 − 2𝑊𝑥2𝑦2 + 2𝑊𝑏𝑥2 − 𝑏2𝑦2 + 𝑦2

2 +𝑏2

= 𝑊2 𝑥0
2 + 𝑥1

2 + 𝑥2
2

−2𝑊 𝑥0𝑦0 + 𝑥1𝑦1 + 𝑥2𝑦2

+2𝑊𝑏 𝑥0 + 𝑥1 + 𝑥2

−2𝑏 𝑦0 + 𝑦1 + 𝑦2

+ 𝑦0
2 + 𝑦1

2 + 𝑦2
2

+3𝑏2

𝐿 𝑊, 𝑏 = σ𝑖 ො𝑦𝑖 − 𝑦𝑖
2

Adding back the intercept

So what if our function does have an intercept?

More complicated, but the key thing is that L is still just a

quadratic function of W and b

23

𝐿 𝑊, 𝑏 = 𝑊2 𝑥0
2 + 𝑥1

2 + 𝑥2
2

−2𝑊 𝑥0𝑦0 + 𝑥1𝑦1 + 𝑥2𝑦2

+2𝑊𝑏 𝑥0 + 𝑥1 + 𝑥2

−2𝑏 𝑦0 + 𝑦1 + 𝑦2

+ 𝑦0
2 + 𝑦1

2 + 𝑦2
2

+3𝑏2

Adding back the intercept

So the loss becomes a 2-dimensional function, and
we’re trying to find a value for W and a value for b,
which, taken together, minimize L

24

Adding back the intercept

We can still use gradient descent though!

Only now, instead of following the derivative
𝑑𝐿

𝑑𝑊
 of L

with respect to W to the bottom…

We now follow a vector composed of the partial

derivates of L with respect to W and b:
𝜕𝐿

𝜕𝑊
,

𝜕𝐿

𝜕𝑏

We call this vector the gradient of L with respect to
W and b, and usually denote it with the Δ symbol, e.g.
Δ𝐿(W,b)

25

Gradient descent

Gradient descent is the method by which all neural nets are trained.

It works* in any situation where it is possible to calculate the gradient of the loss with
respect to the model parameters

• ො𝑦 = 𝑊𝑥 + 𝑏 has two parameters: W and b

• ChatGPT has 175 billion parameters

*: it works more or less well depending on the shape of the loss function.

• If the function is a nice convex “bucket”, then it will always find the global minimum.

• But this is not usually true

26

Local minima

One issue in gradient descent is “local minima” which
are false “dips” the gradient descent can get stuck in.

27

Saddle points

Another issue is “saddle points” which represent a
minimum for one parameter but a maximum for a
different one.

The gradient for both can be zero here… but it’s not
necessarily a very good solution.

28

Advanced gradient descent

Advanced gradient descent algorithms have various tricks to help them avoid local
minima and other issues

Most popular: Adam

• Uses “momentum” to learn adaptive
learning rate for each parameter

• Generally the default choice for optimizing
any arbitrary neural net

Long story short: just use Adam for everything

• Unless you have a good reason not to

29

Logistic
regression

Logistic regression

Generally in NLP we’re more interested in
classification than regression

• Mapping input x’s to a discrete category
rather than a continuous value

Linear regression not ideal for this

We can do it hackily with a threshold on the
predicted value

• But this has problems

31

Logistic function

To solve this problem, we are going to wrap our
original function, which we will call f, in a logistic
function

One nice thing about it is that it is easy to differentiate
because of the property that:

So if we call our original function f:

32

https://en.wikipedia.org/wiki/Logistic_function

𝜎 𝑥 =
1

1 + 𝑒−𝑥

𝑑

𝑑𝑥
𝜎 𝑥 = 𝜎(𝑥)(1 − 𝜎(𝑥))

𝑑

𝑑𝑥
𝜎 𝑓(𝑥) = 𝜎 𝑓(𝑥) 1 − 𝜎 𝑓(𝑥) 𝑓′ 𝑥 = 𝑊𝜎(𝑊𝑥 + 𝑏)(1 − 𝜎(𝑊𝑥 + 𝑏))

𝜎 𝑓(𝑥) =
1

1 + 𝑒−(𝑊𝑥+𝑏)

Logistic regression

So now instead of trying to fit a straight line to
the data, we’re trying to choose W and b to fit this
S-shaped logistic curve to the data

Different choices for W and b change how steep
the curve is and where it is centered.

33

Gradient descent for logistic regression

I won’t do the full derivation, but:

• The function we’re trying to fit is differentiable

• Which means we can create a differentiable loss function

• Which means we can do gradient descent!

However: mean squared error is not always convex for logistic regression

So we typically use cross-entropy loss as our objective:

• Sum across possible classes of true value for that class
multiplied by predicted log-probability of that class

More detailed discussion available in Speech and Language Processing chapter
5: https://web.stanford.edu/~jurafsky/slp3/5.pdf

34

𝐿 𝑦, ො𝑦 =

𝑐

𝑦𝑐log(ො𝑦𝑐)

https://web.stanford.edu/~jurafsky/slp3/5.pdf

Visualizing linear regression

35

You can think of linear regression as a vector
operation between matrices of x’s, W’s and ys

Or in a graphical form which shows how the
individual x’s come together to form ො𝑦

Visualizing logistic regression

36

You can do the same thing for logistic regression by adding the σ function

Visualizing logistic regression

37

https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity

https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity

When we think of the logistic function as a final step being
placed on top of the weighted sum 𝑊𝑥 + 𝑏 in order to
squeeze it down to [0,1], then we call it an activation
function

There are a bunch of activation functions commonly used in
neural nets:

• Rectified linear (relu), tanh, etc…

https://pytorch.org/docs/stable/nn.html#non-linear-
activations-weighted-sum-nonlinearity

But logistic is the classic one

https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity
https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity

Linear vs logistic
regression in
practice

Code description Notebook headings

Linear regression with Scikit-Learn

39

• Read/preprocess SST-2

• Build and evaluate a Scikit-learn linear
regression model

• Manually inspect some model
parameters to explain predictions

“Kangaroo” and “Edmund”

“Kangaroo”

“Edmund” ???

48

Code description Notebook headings

Logistic regression with Scikit-Learn

51

• Example of training, evaluation and
inspection of a Scikit-Learn logistic
regression model

Concluding thoughts

Linear regression

• Learn 𝑊𝑥 + 𝑏 from data

• Predict continuous values

• Optimize mean squared error

Logistic regression

• Learn σ(𝑊𝑥 + 𝑏) from data

• Predict (close to) 0 or 1

• Optimize cross-entropy

57

Key concepts:

• Loss function

• I.e. objective function

• Gradient of loss with respect to
parameters

• Gradient descent

• Activation function

	Slide 1: Linear and Logistic Regression
	Slide 2: Last lecture
	Slide 3: Parametric classification
	Slide 4: Parametric classification
	Slide 5: Toy dataset
	Slide 6: Manual parameters/predictions
	Slide 7: Logistic function
	Slide 8: Sigmoid-ed manual predictions
	Slide 9: Linear regression
	Slide 10: Linear regression
	Slide 11: Linear regression
	Slide 12: Loss function
	Slide 13: Simple example
	Slide 14: Simple example
	Slide 15: Simple example
	Slide 16: Simple example
	Slide 17: Simple example
	Slide 18: Simple example
	Slide 19: Simple example
	Slide 20: Simple example
	Slide 21: Simple example
	Slide 22: Adding back the intercept
	Slide 23: Adding back the intercept
	Slide 24: Adding back the intercept
	Slide 25: Adding back the intercept
	Slide 26: Gradient descent
	Slide 27: Local minima
	Slide 28: Saddle points
	Slide 29: Advanced gradient descent
	Slide 30: Logistic regression
	Slide 31: Logistic regression
	Slide 32: Logistic function
	Slide 33: Logistic regression
	Slide 34: Gradient descent for logistic regression
	Slide 35: Visualizing linear regression
	Slide 36: Visualizing logistic regression
	Slide 37: Visualizing logistic regression
	Slide 38: Linear vs logistic regression in practice
	Slide 39: Linear regression with Scikit-Learn
	Slide 48: “Kangaroo” and “Edmund”
	Slide 51: Logistic regression with Scikit-Learn
	Slide 57: Concluding thoughts

