
Dimension Reduction
CS 759/859 Natural Language Processing Lecture 6

Samuel Carton, University of New Hampshire

Last lecture

Key idea: Clustering text

Concepts

• Unsupervised learning

• Clustering

• K-means clustering

• Clustering metrics

• Extrinsic

• Mutual information

• Intrinsic

• Silhouette score

• Representing induvial clusters

2

Toolkits

• Matplotlib for data visualization

• Scikit-Learn for model building and evaluation

Vectorizing text revisited

3

Preprocessed text Sparse matrix

1-gram vectorization

Vectorizing text revisited

4

Preprocessed text Sparse matrix

1-gram vectorization

Comprehension questions

• How many rows does the sparse matrix have?

• How many columns?

• What does it mean if m[i][j] > 0?

• How will the matrix differ between CountVectorizer and TfidfVectorizer?

Vectorizing text revisited

5

Preprocessed text Sparse matrix

Comprehension questions

• How many rows does the sparse matrix have?

• Number of texts

• How many columns?

• Size of vocabulary

• What does it mean if m[i][j] > 0?

• The ith text contains the jth word

• How will the matrix differ between CountVectorizer and TfidfVectorizer?

• Counts vs TF-IDF scores, 0’s will be the same

1-gram vectorization

Disadvantages of sparse matrices

In a given sparse text vector matrix, 99% of values are going to be 0

Example: 4 categories from the 20-newsgroups dataset

• 3387 texts

• Average text length: 244 tokens

• 5945 unique tokens in vocabulary

So…

• Sparse matrix is 3387x5945 = 20,135,715 elements

• But only 190,747 nonzero elements

• So space utilization of ~1%

Bummer

6

Disadvantages of sparse matrices

Although why is it actually a bummer?

One big issue: compute

• Training and inference on ML models usually scales at least
linearly with length/width of data

• So it’s unfortunate to have to work with giant matrices that have
a bunch of wasted space

7

Sparse matrices in Python

The SciPy language has implementations
of sparse matrices which store only
nonzero values

• https://docs.scipy.org/doc/scipy/refer
ence/sparse.html

• A few different options for how exactly
values are stored (CSR, CSC, etc)

• Scit-learn vectorizers output CSR
matrices, which each row is stored in
a compressed form

Still kind of a pain to work with though

8

https://docs.scipy.org/doc/scipy/reference/sparse.html
https://docs.scipy.org/doc/scipy/reference/sparse.html

Sparse matrices in Python

Two key ways to use Scipy sparse matrices:

1. Convert them to dense numpy arrays:

• Be aware that this may be huge
and overwhelm your RAM

2. Identify the row and column
indices of nonzero values:

9

Disadvantages of sparse matrices

Another big issue: sparsity

Consider “He is an idiot” vs. “They are morons”

• Pretty similar!

“He is an idiot”

“They are morons”

What happens when we try to calculate the cosine similarity between these two vectors?

Reminder:

10

he they is are an idiot moron …

1 0 1 0 1 1 0 0…

0 1 0 1 0 0 1 0…

Rest of the vocabulary

Solution: dimension reduction

It would be nice if we had a way to take these big sparse matrices and squeeze them down
to a denser representation

• Without losing too much information (compare to lossy vs. lossless compression)

Go from 3387x5945 to 3387x100 or 3387x50

If we could do that then:

1. They’d be easier to work with computationally

2. We might begin to be able to overcome some of our data sparsity issues

• Spoiler alert: this is what word embeddings are

Key idea: dimension reduction

11

How to represent data?

When we have a bunch of datapoints, and
each datapoint is a vector of N-elements,
we can think of them as points in an N-
dimensional space.

Next few slides partially borrowed from

https://cbmm.mit.edu/learning-hub/tutorials/computational-tutorial/dimensionality-reduction-i

https://cbmm.mit.edu/learning-hub/tutorials/computational-tutorial/dimensionality-reduction-i

How to represent data?

The dataset on the could represent a
bunch of 2-element vectors, where there
first element is the x value and the second
is the y value:

D= X Y

.45 .47

.22 .76

.64 .48

.51 .59

.17 .91

.88 .20

…

How to represent data?

But one thing you can note is that most of
the variance here is actually just along
one line

How to represent data?

But one thing you can note is that most of
the variance here is actually just along
one line

How to represent data?

But one thing you can note is that most of
the variance here is actually just along
one line

And relatively little is along the
orthogonal direction

How to represent data?

But one thing you can note is that most of
the variance here is actually just along
one line

And relatively little is along the
orthogonal direction.

Which means that if you are trying to
describe the location of a point with only
one number, you get the most mileage
out of describing how far along the blue
line it is

How to represent data?

So if we had to approximate D using only
one dimension, we could use the blue line
as the new basis for our data

D= D*=

≈

X Y

.45 .47

.22 .76

.64 .48

.51 .59

.17 .91

.88 .20

…

V

.44

.80

.34

.37

.99

.15

…

Dimension reduction

Basic idea: take a data matrix of size M×N and compress it to M×D, where D << M, while
still retaining most of the useful information in the matrix

• For text, go from M sparse vectors of dimensionality V=size of the vocabulary, to M
dense vectors of size D, where D is significantly smaller (100, 200, etc.)

• While still being useful for classification, clustering, etc.

In many approaches, do this by identifying new basis vectors of high variance, and then
represent each datapoint in terms of only the most important ones

Two most popular approaches:

• Principal component analysis (PCA)

• Singular value decomposition (SVD)

19

Matrix multiplication

When you multiply two matrixes Am×n * Bn×p, you get Cm×p by calculating the dot product of
every row of A with every column of B

Only matrixes with matching inner dimensions (e.g. m×n versus n×p) can be multiplied

20

Matrix transpose

Transposing a matrix, denoted by MT, switches its dimensions.

Very common operation in linear algebra

Also the only way you can multiply a matrix by itself
unless it is square

21

Examples:

Covariance matrix

The covariance matrix quantifies the joint variability between two random variables X and Y

When X is a data matrix of n samples × m features, centered on 0, then the covariance
matrix can be calculated as:

So for a count or TF-IDF matrix, we end up with an m × m matrix where C[i][j] represents…
what?

22

PCA and SVD

Principle component analysis (PCA) and singular value decomposition (SVD) are both
matrix factorization techniques, which calculate how to express the covariance matrix as
a product of lower-dimensionality matrices.

PCA performs an eigendecomposition of the covariance matrix C, which learns to
represent it as , where W is a m×m matrix of eigenvectors, and Λ a diagonal
m×m matrix of eigenvalues

SVD performs a decomposition of C into a product of two unitary matrices (U, V*) and a
rectangular diagonal matrix of singular values (Σ): 𝐶 = 𝑈𝛴𝑉∗

In both cases, we can get back a lower-dimension approximation of our original X by
performing the product with subsets of the factor matrices:

Example for PCA:
23

𝐶 = 𝑊𝛬𝑊−1

PCA vs. SVD in practice

In practice, PCA is calculated “under the hood” using SVD (truncated SVD for text)

• SVD singular values are easily convertible to PCA eigenvalues

So mostly you will be using SVD for dimension reduction in practice

And you can look at the singular values to get a sense of how much of the variance of the
original data are explained in the D dimensions you’ve chosen to retain.

24

Conventional clustering

25

Conventional clustering

26

Conventional clustering

27

SVD for clustering

28

SVD for clustering

29

SVD for clustering

30

SVD for clustering

31

SVD for visualizing clusters

32

SVD for visualizing clusters

33

SVD for visualizing clusters

34

SVD for visualizing clusters

35

Concluding thoughts

In NLP, learning dense representations of text is absolutely critical.

You can only get so far with sparse bag-of-words or TF-IDF representations.

Deep learning, aka representation learning

• Learns “targeted” dense representations optimized for specific tasks

Dimension reduction: “general-purpose” representations optimized for mathematical properties

• SVD on term-document matrix is called Latent Semantic Analysis (1988)

Still useful for prediction, clustering, visualization, etc.

Much of this lecture borrowed from: https://towardsdatascience.com/pca-and-svd-explained-with-

numpy-5d13b0d2a4d8 36

https://towardsdatascience.com/pca-and-svd-explained-with-numpy-5d13b0d2a4d8
https://towardsdatascience.com/pca-and-svd-explained-with-numpy-5d13b0d2a4d8

	Slide 1: Dimension Reduction
	Slide 2: Last lecture
	Slide 3: Vectorizing text revisited
	Slide 4: Vectorizing text revisited
	Slide 5: Vectorizing text revisited
	Slide 6: Disadvantages of sparse matrices
	Slide 7: Disadvantages of sparse matrices
	Slide 8: Sparse matrices in Python
	Slide 9: Sparse matrices in Python
	Slide 10: Disadvantages of sparse matrices
	Slide 11: Solution: dimension reduction
	Slide 12: How to represent data?
	Slide 13: How to represent data?
	Slide 14: How to represent data?
	Slide 15: How to represent data?
	Slide 16: How to represent data?
	Slide 17: How to represent data?
	Slide 18: How to represent data?
	Slide 19: Dimension reduction
	Slide 20: Matrix multiplication
	Slide 21: Matrix transpose
	Slide 22: Covariance matrix
	Slide 23: PCA and SVD
	Slide 24: PCA vs. SVD in practice
	Slide 25: Conventional clustering
	Slide 26: Conventional clustering
	Slide 27: Conventional clustering
	Slide 28: SVD for clustering
	Slide 29: SVD for clustering
	Slide 30: SVD for clustering
	Slide 31: SVD for clustering
	Slide 32: SVD for visualizing clusters
	Slide 33: SVD for visualizing clusters
	Slide 34: SVD for visualizing clusters
	Slide 35: SVD for visualizing clusters
	Slide 36: Concluding thoughts

