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Last lecture
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Concepts

• Bag-of-words representations (i.e. 
unigrams, 1-grams) of text

• Preprocessing text

• Lower-casing

• Tokenization

• Stemming

• Vectorizing text

• Similarity metrics

• Jaccard similarity

• Cosine distance

• Others

• TF-IDF

Toolkits

• NLTK

• For tokenization & stemming

• Numpy

• For manipulating vectors

• Scikit-Learn

• For vectorizing lists of texts 
automatically

• Also includes implementations of 
similarity metrics (Jaccard, cosine, 
etc)



Supervised learning for classification

Classification: given input text 𝑥, classify 𝑥 by predicting label 𝑦 

• “You are an ass!” → toxic 

• “The movie was great.” → positive

• “SALE! SALE! SALE!” → spam

Label, i.e. “class”

Supervised learning:  given a training set 𝑋𝑡𝑟𝑎𝑖𝑛 with labels 𝑌𝑡𝑟𝑎𝑖𝑛, learn how to predict 𝑦 
for an unseen input 𝑥

All we know how to do right now is text similarity. How to do supervised classification with 
just this tool?
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• “You are a mensch!” → nontoxic 

• “The movie was awful.” → negative

• “I’m breaking up with you.”→ not spam



K-nearest neighbors

Basic idea: when trying to classify 𝑥, find the K nearest 
neighbors of 𝑥 within 𝑋𝑡𝑟𝑎𝑖𝑛 and let ො𝑦 be the majority-vote 
true label 𝑦𝑡𝑟𝑎𝑖𝑛 among those K neighbors

Why does it have to be K? Why not always K = 1?

How would you implement this given what you already 
know?

4

https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm



K-nearest neighbors

3-class dataset

5https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm



K-nearest neighbors

3-class dataset
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K-nearest neighbors

3-class dataset
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K-nearest neighbors

K=1
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K-nearest neighbors

K=5
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K-nearest neighbors

K=181?

(If there were 60 red, 60 blue, and 61 green)

12

?

?

?

?



K-nearest neighbors

K=181?

(If there were 60 red, 60 blue, and 61 green)
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Underfitting vs. overfitting

Underfitting: the model imposes too many assumptions and fails to learn the shape of 
the data

• K=181 is the most underfit you could possibly be

Overfitting: the model doesn’t impose enough assumptions about the data and ends up 
overly sensitive to outliers

• K=1 is going to tend to overfit

14



Bias-variance tradeoff

Bias: the tendency of the model to impose overly strong structural/statistical assumptions 
on the data and miss the real structure of the data

• Leads to underfitting

Variance: tendency of the model to accidentally capture random noise in the data and 
thus be vulnerable to outliers and random variation

• Leads to overfitting
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Hyperparameters

For any model, bias and variance are balanced using hyperparameters

• How many neighbors to use

• What distance metric to use

• Whether to set binary=True or False in the vectorizer

A big part of model building is finding the best (or adequately okay) set of 
hyperparameters

Simplest and most common approach is to just search exhaustively over space of possible 
values—called grid search

Contrast with parameters, which are learned from the data

• K-NN is a non-parametric model, but we’ll get to parametric models soon
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Case study: SST-2

• Stanford Sentiment Treebank (2-class 
version)

• Short movie reviews, tagged as 
positive or negative in sentiment

• Created by Socher et al. (2013)

• https://nlp.stanford.edu/sentiment/tr
eebank.html

• Included as part of GLUE benchmark 

• https://gluebenchmark.com/tasks

• Size:

• 67,349 training examples

• 872 dev examples

• 1821 test examples

17

the rock is destined to be the 21st century 's new `` conan '' 

and that he 's going to make a splash even greater than arnold 

schwarzenegger , jean-claud van damme or steven segal . 

positive (1)

https://nlp.stanford.edu/sentiment/treebank.html
https://nlp.stanford.edu/sentiment/treebank.html
https://gluebenchmark.com/tasks


Pandas: read and manipulate data

Pandas is a useful Python library for reading and manipulating datasets of various kinds 
(text included)

https://pandas.pydata.org/

Largely consists of an implementation of “DataFrame” from the R statistical analysis 
language

• Swiss army knife data structure

Likely to be covered more thoroughly in a “data science” course. 
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https://pandas.pydata.org/


Pandas, SST-2 and K-NN

Code description

• Basic Pandas usage, 

• Using Pandas to import the SST-2 
dataset into a DataFrame

• Vectorizing the imported data

• Training a K-NN model on it
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Headings 



Evaluating classifiers

Given a set of predictions ෠𝑌 and the true labels 𝑌, there are a few different ways to 
evaluate how well we did.

One way to divide up predictions is into errors ( ො𝑦 ≠ 𝑦) and non-errors ( ො𝑦 = 𝑦)

In a binary classification setting (like SST-2), we can also think about different kinds of 
errors and non-errors:

• True positives (TPs): ො𝑦 = 1;  𝑦 = 1 

• True negatives (TNs): ො𝑦 = 0;  𝑦 = 0 

• False positives (FPs): ො𝑦 = 1;  𝑦 = 0 

• False negatives (FNs): ො𝑦 = 0;  𝑦 = 1 

Things get more complicated with 3+ classes, but don’t worry about it for now
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https://en.wikipedia.org/wiki/Evaluation_of_binary_classifiers



Accuracy

What percentage of my guesses were correct?

Problematic when the true labels are highly unbalanced (e.g. 90% positive, 10% negative)

• 91% accuracy looks good by itself, but not so great if you could get 90% by just 
guessing the most common class. 
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=
𝐶𝑂𝑅

𝐶𝑂𝑅 + 𝐸𝑅𝑅



Recall

Of all the positives examples, what percentage of them did I correctly guess were positive?

AKA sensitivity, true positive rate (TPR)

Particularly important when we really don’t want to miss any positives

• I.e. we want to avoid false negatives

• What are tasks for which this is this the case?
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Precision

When I guessed positive, how likely was I to be correct?

AKA positive predictive value (PPV)

Particularly important when we really don’t want to falsely predict any example as 
positive

• What are tasks where this is the case?
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F1 score

Defined as the harmonic mean of precision and recall

Balances precision and recall. 

Does a better job of handling unbalanced data

• Although you still probably want to calculate F1 for both possible definitions of 
“positive”, then take the mean of that value
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Classification metrics—summary 

Accuracy: most common metric, has the most intuitive interpretation, can be misleading 
on unbalanced data

F1: Less common, but gives a better performance estimation for unbalanced data

Precision: Used when you care about false positives

Recall: Used when you care about false negatives

Other notes:

• All but accuracy require definition of which class represents “positive”

• So common together that often abbreviated as A/P/R/F1
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Evaluating and debugging the model

Code description

• Evaluating the model performance

• Inspecting its predictions on an 
individual example
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Headings 



The problem

3 main things going on here:

1. It turns out that “was” is less common in the corpus (only 608 instances) than we 
might expect compared to delight (325 instances)

2. “was” occurs twice in "the film was a delight -- i was riveted .”, so it gets a higher tf-idf 
weight for that vector

3. Because cosine distance is normalized by vector magnitude, the tf-idf values in 
shorter texts get a higher value than the same ones in longer texts

We can’t do anything about 1 without changing the corpus, or about 3 without using a 
different distance metric

But what about 2?
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Training a new model

Code description

• Training a new model to address the 
issues we just identified
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Headings 



Why did I go through that with you?

1. I had to deal with it when I was writing the code, so now you get to deal with it too. 

2. These kinds of issues come up all the time. Model debugging is part of the life of an NLP 
or data science practitioner. 
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Model confidence

Sometimes you want not just a prediction, but a confidence estimate of how certain the 
classifier is in its prediction.

What are some cases where you might want this?

How to calculate confidence varies from model to model, and doing it robustly is a whole 
research topic in and of itself. 

For K-nearest-neighbors, you can just look at the votes of the K neighbors. 
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Model confidence & hyperparameters

Code description

• Showing how to assess model 
confidence for K-NN

• Showing how to set 
hyperparameters for K-NN
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Headings 



Other things to know

How to use each set:

• Train on the training set

• Experiment on the dev set

• Leave the test set alone until the very end (notice we didn’t even use it)

When dealing with temporal data (which SST-2 is not, really)

• Never, ever, train on future data and test on past data

• Super common mistake in the wild
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Concluding thoughts

Pretty cool that we can already build models with what little we’ve learned so far. Non-
parametric models so far, but we’re getting there. 

When doing nearest-neighbor classification (and classification generally for 1 and 2):

1. How you choose to vectorize your text matters a lot

2. The distance metric you use matters a lot

3. Sometimes more sensible individual predictions don't translate to better 
performance
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Conclusion

New toolkit: Pandas

Concepts:

• Supervised learning for classification

• K-nearest neighbors model

• Underfitting/overfitting

• Bias-variance trade-off

• Hyperparameters

• Evaluation metrics

• Model confidence
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