
Supervised Learning with Nearest
Neighbors
CS 759/859 Natural Language Processing Lecture 4

Samuel Carton, University of New Hampshire

Last lecture

2

Concepts

• Bag-of-words representations (i.e.
unigrams, 1-grams) of text

• Preprocessing text

• Lower-casing

• Tokenization

• Stemming

• Vectorizing text

• Similarity metrics

• Jaccard similarity

• Cosine distance

• Others

• TF-IDF

Toolkits

• NLTK

• For tokenization & stemming

• Numpy

• For manipulating vectors

• Scikit-Learn

• For vectorizing lists of texts
automatically

• Also includes implementations of
similarity metrics (Jaccard, cosine,
etc)

Supervised learning for classification

Classification: given input text 𝑥, classify 𝑥 by predicting label 𝑦

• “You are an ass!” → toxic

• “The movie was great.” → positive

• “SALE! SALE! SALE!” → spam

Label, i.e. “class”

Supervised learning: given a training set 𝑋𝑡𝑟𝑎𝑖𝑛 with labels 𝑌𝑡𝑟𝑎𝑖𝑛, learn how to predict 𝑦
for an unseen input 𝑥

All we know how to do right now is text similarity. How to do supervised classification with
just this tool?

3

• “You are a mensch!” → nontoxic

• “The movie was awful.” → negative

• “I’m breaking up with you.”→ not spam

K-nearest neighbors

Basic idea: when trying to classify 𝑥, find the K nearest
neighbors of 𝑥 within 𝑋𝑡𝑟𝑎𝑖𝑛 and let ො𝑦 be the majority-vote
true label 𝑦𝑡𝑟𝑎𝑖𝑛 among those K neighbors

Why does it have to be K? Why not always K = 1?

How would you implement this given what you already
know?

4

https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

K-nearest neighbors

3-class dataset

5https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

K-nearest neighbors

3-class dataset

6https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

?

K-nearest neighbors

3-class dataset

7https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

?

K-nearest neighbors

3-class dataset

8https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

?

K-nearest neighbors

3-class dataset

9https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

?

K-nearest neighbors

K=1

10

?

?

??

K-nearest neighbors

K=5

11

?

?

?

?

K-nearest neighbors

K=181?

(If there were 60 red, 60 blue, and 61 green)

12

?

?

?

?

K-nearest neighbors

K=181?

(If there were 60 red, 60 blue, and 61 green)

13

?

?

?

?

Underfitting vs. overfitting

Underfitting: the model imposes too many assumptions and fails to learn the shape of
the data

• K=181 is the most underfit you could possibly be

Overfitting: the model doesn’t impose enough assumptions about the data and ends up
overly sensitive to outliers

• K=1 is going to tend to overfit

14

Bias-variance tradeoff

Bias: the tendency of the model to impose overly strong structural/statistical assumptions
on the data and miss the real structure of the data

• Leads to underfitting

Variance: tendency of the model to accidentally capture random noise in the data and
thus be vulnerable to outliers and random variation

• Leads to overfitting

15

Hyperparameters

For any model, bias and variance are balanced using hyperparameters

• How many neighbors to use

• What distance metric to use

• Whether to set binary=True or False in the vectorizer

A big part of model building is finding the best (or adequately okay) set of
hyperparameters

Simplest and most common approach is to just search exhaustively over space of possible
values—called grid search

Contrast with parameters, which are learned from the data

• K-NN is a non-parametric model, but we’ll get to parametric models soon
16

Case study: SST-2

• Stanford Sentiment Treebank (2-class
version)

• Short movie reviews, tagged as
positive or negative in sentiment

• Created by Socher et al. (2013)

• https://nlp.stanford.edu/sentiment/tr
eebank.html

• Included as part of GLUE benchmark

• https://gluebenchmark.com/tasks

• Size:

• 67,349 training examples

• 872 dev examples

• 1821 test examples

17

the rock is destined to be the 21st century 's new `` conan ''

and that he 's going to make a splash even greater than arnold

schwarzenegger , jean-claud van damme or steven segal .

positive (1)

https://nlp.stanford.edu/sentiment/treebank.html
https://nlp.stanford.edu/sentiment/treebank.html
https://gluebenchmark.com/tasks

Pandas: read and manipulate data

Pandas is a useful Python library for reading and manipulating datasets of various kinds
(text included)

https://pandas.pydata.org/

Largely consists of an implementation of “DataFrame” from the R statistical analysis
language

• Swiss army knife data structure

Likely to be covered more thoroughly in a “data science” course.

18

https://pandas.pydata.org/

Pandas, SST-2 and K-NN

Code description

• Basic Pandas usage,

• Using Pandas to import the SST-2
dataset into a DataFrame

• Vectorizing the imported data

• Training a K-NN model on it

19

Headings

Evaluating classifiers

Given a set of predictions ෠𝑌 and the true labels 𝑌, there are a few different ways to
evaluate how well we did.

One way to divide up predictions is into errors (ො𝑦 ≠ 𝑦) and non-errors (ො𝑦 = 𝑦)

In a binary classification setting (like SST-2), we can also think about different kinds of
errors and non-errors:

• True positives (TPs): ො𝑦 = 1; 𝑦 = 1

• True negatives (TNs): ො𝑦 = 0; 𝑦 = 0

• False positives (FPs): ො𝑦 = 1; 𝑦 = 0

• False negatives (FNs): ො𝑦 = 0; 𝑦 = 1

Things get more complicated with 3+ classes, but don’t worry about it for now
32

https://en.wikipedia.org/wiki/Evaluation_of_binary_classifiers

Accuracy

What percentage of my guesses were correct?

Problematic when the true labels are highly unbalanced (e.g. 90% positive, 10% negative)

• 91% accuracy looks good by itself, but not so great if you could get 90% by just
guessing the most common class.

33

=
𝐶𝑂𝑅

𝐶𝑂𝑅 + 𝐸𝑅𝑅

Recall

Of all the positives examples, what percentage of them did I correctly guess were positive?

AKA sensitivity, true positive rate (TPR)

Particularly important when we really don’t want to miss any positives

• I.e. we want to avoid false negatives

• What are tasks for which this is this the case?

34

Precision

When I guessed positive, how likely was I to be correct?

AKA positive predictive value (PPV)

Particularly important when we really don’t want to falsely predict any example as
positive

• What are tasks where this is the case?

35

F1 score

Defined as the harmonic mean of precision and recall

Balances precision and recall.

Does a better job of handling unbalanced data

• Although you still probably want to calculate F1 for both possible definitions of
“positive”, then take the mean of that value

36

Classification metrics—summary

Accuracy: most common metric, has the most intuitive interpretation, can be misleading
on unbalanced data

F1: Less common, but gives a better performance estimation for unbalanced data

Precision: Used when you care about false positives

Recall: Used when you care about false negatives

Other notes:

• All but accuracy require definition of which class represents “positive”

• So common together that often abbreviated as A/P/R/F1

37

Evaluating and debugging the model

Code description

• Evaluating the model performance

• Inspecting its predictions on an
individual example

38

Headings

The problem

3 main things going on here:

1. It turns out that “was” is less common in the corpus (only 608 instances) than we
might expect compared to delight (325 instances)

2. “was” occurs twice in "the film was a delight -- i was riveted .”, so it gets a higher tf-idf
weight for that vector

3. Because cosine distance is normalized by vector magnitude, the tf-idf values in
shorter texts get a higher value than the same ones in longer texts

We can’t do anything about 1 without changing the corpus, or about 3 without using a
different distance metric

But what about 2?

48

Training a new model

Code description

• Training a new model to address the
issues we just identified

49

Headings

Why did I go through that with you?

1. I had to deal with it when I was writing the code, so now you get to deal with it too.

2. These kinds of issues come up all the time. Model debugging is part of the life of an NLP
or data science practitioner.

53

Model confidence

Sometimes you want not just a prediction, but a confidence estimate of how certain the
classifier is in its prediction.

What are some cases where you might want this?

How to calculate confidence varies from model to model, and doing it robustly is a whole
research topic in and of itself.

For K-nearest-neighbors, you can just look at the votes of the K neighbors.

54

Model confidence & hyperparameters

Code description

• Showing how to assess model
confidence for K-NN

• Showing how to set
hyperparameters for K-NN

55

Headings

Other things to know

How to use each set:

• Train on the training set

• Experiment on the dev set

• Leave the test set alone until the very end (notice we didn’t even use it)

When dealing with temporal data (which SST-2 is not, really)

• Never, ever, train on future data and test on past data

• Super common mistake in the wild

61

Concluding thoughts

Pretty cool that we can already build models with what little we’ve learned so far. Non-
parametric models so far, but we’re getting there.

When doing nearest-neighbor classification (and classification generally for 1 and 2):

1. How you choose to vectorize your text matters a lot

2. The distance metric you use matters a lot

3. Sometimes more sensible individual predictions don't translate to better
performance

62

Conclusion

New toolkit: Pandas

Concepts:

• Supervised learning for classification

• K-nearest neighbors model

• Underfitting/overfitting

• Bias-variance trade-off

• Hyperparameters

• Evaluation metrics

• Model confidence

63

	Slide 1: Supervised Learning with Nearest Neighbors
	Slide 2: Last lecture
	Slide 3: Supervised learning for classification
	Slide 4: K-nearest neighbors
	Slide 5: K-nearest neighbors
	Slide 6: K-nearest neighbors
	Slide 7: K-nearest neighbors
	Slide 8: K-nearest neighbors
	Slide 9: K-nearest neighbors
	Slide 10: K-nearest neighbors
	Slide 11: K-nearest neighbors
	Slide 12: K-nearest neighbors
	Slide 13: K-nearest neighbors
	Slide 14: Underfitting vs. overfitting
	Slide 15: Bias-variance tradeoff
	Slide 16: Hyperparameters
	Slide 17: Case study: SST-2
	Slide 18: Pandas: read and manipulate data
	Slide 19: Pandas, SST-2 and K-NN
	Slide 32: Evaluating classifiers
	Slide 33: Accuracy
	Slide 34: Recall
	Slide 35: Precision
	Slide 36: F1 score
	Slide 37: Classification metrics—summary
	Slide 38: Evaluating and debugging the model
	Slide 48: The problem
	Slide 49: Training a new model
	Slide 53: Why did I go through that with you?
	Slide 54: Model confidence
	Slide 55: Model confidence & hyperparameters
	Slide 61: Other things to know
	Slide 62: Concluding thoughts
	Slide 63: Conclusion

