
RNN Language Modeling
CS 759/859 Natural Language Processing Lecture 15

Samuel Carton, University of New Hampshire

Last lecture

2

Sequence tagging

• POS tagging

LSTMs as a NLP Swiss army knife

Domain-specific word embeddings

Masked loss

LSTMs: NLP Swiss army knife

LSTMs are exciting for us because they are the Swiss army knife of NLP models.

• Sequence classification

• Sequence tagging

• Language modeling

• Text-to-text (e.g. translation)

3

and

Review: Language modeling

Basic idea: Given words {w0, w1, w2,…, wt-1}, we want to be able to reliably predict wt

If we can do this, we can:

• Generate new text

• Assess the overall likelihood of a piece of text

• (In 2023) talk to the model like it is a person and make it do stuff for us

• Prompt engineering

Lecture content borrowed from https://courses.engr.illinois.edu/cs447/fa2020/index.html

4

https://courses.engr.illinois.edu/cs447/fa2020/index.html

Another view of sequence tagging

5

Pretrained word

embeddings (frozen)

= input/output tensor

= model parameter

sparse unigram word vector0

dense word vector0

LSTM cell

hidden vector0

state vector0state vector-1

Output

layer

class

logits0

hidden vector-1

Pretrained word

embeddings (frozen)

sparse unigram word vector1

dense word vector1

LSTM cell

hidden vector1

state vector1

Output

layer

class

logits0

Word logits rather than class logits

6

Pretrained word

embeddings (frozen)

= input/output tensor

= model parameter

sparse unigram word vector0

dense word vector0

LSTM cell

hidden vector0

state vector0state vector-1

sparse unigram word logits0

hidden vector-1

Pretrained word

embeddings (frozen)

sparse unigram word vector1

dense word vector1

LSTM cell

hidden vector1

state vector1

sparse unigram word logits1

Output

layer
Output

layer

Autoregressive generation

7

Autoregressive completion

8

Generating with a RNN

Also known as decoding: taking the output hidden-state vectors from the RNN at each
step and decoding them into a sequence of actual words

Greedy decoding: always pick the most likely word at any given step

Sampling: randomly sample each word according to output logits

Beam search decoding: keep a number of possible sequences after each time step

• Fixed-width beam: keep top-K sequences

• Variable-width beam: keep all sequences whose likelihood is within certain threshold
of best

9

Beam search decoding

• Keep the k best options around at each time step.

• Operate breadth-first: keep the k best next hypotheses among the best continuations
for each of the current k hypotheses.

• Reduce beam width every time a sequence is completed (EOS)

10

Training RNN language models

11

Maximum likelihood estimation (MLE): train the model to maximize the likelihood of the
training corpus

• Aka “teacher forcing”

Each training sequence {w0, w1, w2, …, wT} turns into T training items:

Given {w0, w1, w2,…, wt-1}, train model to maximize probability of wt

Autoregressive generation

12

Autoregressive generation

13

Autoregressive generation

14

Autoregressive generation

15

Problem with teacher forcing

Neural networks (and ML models generally) don’t do well with domain shift

Meaning, if you train the model on data that is distributed one way, it generally will not do
well on data that is distributed a different way.

• E.g. Using a Twitter word embedding model on Reddit data

• E.g. Training sentiment detection on movie reviews but testing on product reviews

• “Kangaroo”

How does this apply to text generation?

16

Problem with teacher forcing

Exposure bias: We’re training the model to predict the next word, given the previous
true words

But when we generate text, the model is looking at words it generated

17

Solutions
Minimum risk training:
(Shen et al. 2016, https://www.aclweb.org/anthology/P16-1159.pdf)
— define a loss function (e.g. negative BLEU) to compare
 generated sequences against gold sequences
—Minimize risk (expected loss on training data) such that candidates
outputs with a smaller loss (higher BLEU score) have higher probability.

Reinforcement learning-based approaches:
(Ranzato et al. 2016 https://arxiv.org/pdf/1511.06732.pdf)
— use BLEU as a reward (i.e. like MRT)
— perhaps pre-train model first with standard teacher forcing.

GAN-based approaches (“professor forcing”)
(Goyal et al. 2016, http://papers.nips.cc/paper/6099-professor-forcing-anew-algorithm-
for-training-recurrent-networks.pdf)
— combine standard RNN with an adversarial model that aims to
distinguish original from generated sequences

18

Code description Notebook headings

Teacher-forcing LSTM LM in Pytorch

19

• Loading & preprocessing SST-2 & GloVe
vectors, packaging them into a
Dataset/Dataloader pair

• Implementation of an LSTM language
model which uses teacher forcing for
training and sampling for generation

• Testing generation and log-likelihood
evaluation of sequences with the trained
model

Concluding thoughts

RNNs for language modeling

Generating text

• Greedy decoding

• Random sampling

• Beam search decoding

Training RNNs

• Teacher forcing

• Exposure bias

• Alternatives

• Minimum risk, reinforcement learning, GANs

20

	Slide 1: RNN Language Modeling
	Slide 2: Last lecture
	Slide 3: LSTMs: NLP Swiss army knife
	Slide 4: Review: Language modeling
	Slide 5: Another view of sequence tagging
	Slide 6: Word logits rather than class logits
	Slide 7: Autoregressive generation
	Slide 8: Autoregressive completion
	Slide 9: Generating with a RNN
	Slide 10: Beam search decoding
	Slide 11: Training RNN language models
	Slide 12: Autoregressive generation
	Slide 13: Autoregressive generation
	Slide 14: Autoregressive generation
	Slide 15: Autoregressive generation
	Slide 16: Problem with teacher forcing
	Slide 17: Problem with teacher forcing
	Slide 18: Solutions
	Slide 19: Teacher-forcing LSTM LM in Pytorch
	Slide 20: Concluding thoughts

