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Last lecture
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Sequence tagging

• POS tagging

LSTMs as a NLP Swiss army knife

Domain-specific word embeddings

Masked loss



LSTMs: NLP Swiss army knife

LSTMs are exciting for us because they are the Swiss army knife of NLP models. 

• Sequence classification

• Sequence tagging

• Language modeling

• Text-to-text (e.g. translation)
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Review: Language modeling

Basic idea: Given words  {w0, w1, w2,…, wt-1}, we want to be able to reliably predict wt

If we can do this, we can:

• Generate new text

• Assess the overall likelihood of a piece of text

• (In 2023) talk to the model like it is a person and make it do stuff for us

• Prompt engineering

Lecture content borrowed from https://courses.engr.illinois.edu/cs447/fa2020/index.html  
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https://courses.engr.illinois.edu/cs447/fa2020/index.html


Another view of sequence tagging
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Word logits rather than class logits
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Autoregressive generation
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Autoregressive completion
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Generating with a RNN

Also known as decoding: taking the output hidden-state vectors from the RNN at each 
step and decoding them into a sequence of actual words

Greedy decoding: always pick the most likely word at any given step

Sampling: randomly sample each word according to output logits

Beam search decoding: keep a number of possible sequences after each time step

• Fixed-width beam: keep top-K sequences

• Variable-width beam: keep all sequences whose likelihood is within certain threshold 
of best
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Beam search decoding

• Keep the k best options around at each time step. 

• Operate breadth-first: keep the k best next hypotheses among the best continuations 
for each of the current k hypotheses. 

• Reduce beam width every time a sequence is completed (EOS)
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Training RNN language models
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Maximum likelihood estimation (MLE): train the model to maximize the likelihood of the 
training corpus

• Aka “teacher forcing”

Each training sequence  {w0, w1, w2, …, wT} turns into T training items:

Given {w0, w1, w2,…, wt-1}, train model to maximize probability of wt



Autoregressive generation
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Autoregressive generation
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Autoregressive generation
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Autoregressive generation
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Problem with teacher forcing

Neural networks (and ML models generally) don’t do well with domain shift

Meaning, if you train the model on data that is distributed one way, it generally will not do 
well on data that is distributed a different way. 

• E.g. Using a Twitter word embedding model on Reddit data

• E.g. Training sentiment detection on movie reviews but testing on product reviews

• “Kangaroo”

How does this apply to text generation?
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Problem with teacher forcing

Exposure bias: We’re training the model to predict the next word, given the previous 
true words

But when we generate text, the model is looking at words it generated
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Solutions
Minimum risk training:
(Shen et al. 2016, https://www.aclweb.org/anthology/P16-1159.pdf)
— define a loss function (e.g. negative BLEU) to compare
 generated sequences against gold sequences
—Minimize risk (expected loss on training data) such that candidates
outputs with a smaller loss (higher BLEU score) have higher probability.

Reinforcement learning-based approaches:
(Ranzato et al. 2016 https://arxiv.org/pdf/1511.06732.pdf)
— use BLEU as a reward (i.e. like MRT)
— perhaps pre-train model first with standard teacher forcing.

GAN-based approaches (“professor forcing”)
(Goyal et al. 2016, http://papers.nips.cc/paper/6099-professor-forcing-anew-algorithm-
for-training-recurrent-networks.pdf)
— combine standard RNN with an adversarial model that aims to
distinguish original from generated sequences
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Code description Notebook headings

Teacher-forcing LSTM LM in Pytorch
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• Loading & preprocessing SST-2 & GloVe 
vectors, packaging them into a 
Dataset/Dataloader pair

• Implementation of an LSTM language 
model which uses teacher forcing for 
training and sampling for generation

• Testing generation and log-likelihood 
evaluation of sequences with the trained 
model



Concluding thoughts

RNNs for language modeling

Generating text

• Greedy decoding

• Random sampling

• Beam search decoding

Training RNNs

• Teacher forcing

• Exposure bias

• Alternatives

• Minimum risk, reinforcement learning, GANs 
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