
Basic statistical language modeling
CS 759/859 Natural Language Processing Lecture 11

Samuel Carton, University of New Hampshire

Last lecture

Intermediate representations

Word vector models

• Word2Vec

• CBOW

• Skip-gram

• GloVe

Word vectors in classification

• Padding

• Collation

• Centroids

2

Probability review

Random variables

A random variable X can take different values depending on chance

Notation:

• p(X = x) is the probability that r.v. X takes value x

• p(x) is shorthand for the same

• p(X) is the distribution over values X can take (a function)

Example: flipping a coin; P(X = heads) = P(X=tails) = 0.5

4

Discrete distributions

A discrete distribution enumerates the values a random variable can take and how likely
each one is

Examples:

p(flipping a coin) = [0.5, 0.5]

p(rolling a die) = [.167, .167, .167, .167, .167, .167]

p(flipping a rigged coin) = [0.25, 0.75]

p(rolling a weighted die) = [0.1, 0 .1, 0.1,0 .1, 0.1, 0.5]

How does entropy relate to the values in the discrete distribution?

5

Joint probability and product rule

The joint probability of two random variables X and Y describes the total chance they
take on a particular pair of values: p(X = x, Y = y)

If X and Y are independent, then p(X = x, Y = y) = p(X = x)* p(Y = y)

Example: two coin flips X and Y. p(X = heads, Y = heads) = 0.5 * 0.5 = 0.25

6

Conditional probability

If X and Y are dependent, then you have to think of the probability of X given Y:
p(X = x | Y = y)

In this case, the joint probability of X and Y is p(Y=y) * p(X = x | Y = y)

 Example: Weather is 50% sunny and 50% cloudy; I am 25% likely to run when sunny and
10% likely when rainy.

P(run|sunny) = .25

P(run, sunny) = 0.5 * 0.25 = 0.125

P(run) = P(run, sunny) + P(run, cloudy) = 0.5 * 0.25 + 0.5 * 0.1 = 0.175

How does mutual information relate to dependence versus independence?

7

Chain rule

If we generalize to N joint random variables, we end up with the chain rule

8

Conditional probability table

With two variables X and Y, we can summarize their joint distribution with a conditional
probability table

Each cell is P(X=column | y = row)

Example:

9

Run Don’t

run

Sunny 0.25 0.75

Cloudy 0.1 0.9
Y

X

Maximum-likelihood probabilistic modeling

Whenever we build a probabilistic model of some phenomenon, we are deciding to fit it
within some probabilistic form, and then finding the parameters for the model that make
the data most likely.

Example:

• Model: the weather is sunny with probability p, and cloudy with probability 1-p

• Data: 10 days; [sunny, cloudy, sunny, sunny, cloudy, sunny, sunny, cloudy, sunny,
sunny]

• MLE estimate of p:

10

Maximum-likelihood probabilistic modeling

Whenever we build a probabilistic model of some phenomenon, we are deciding to fit it
within some probabilistic form, and then finding the most likely parameters of our model
to fit the data.

Example:

• Model: the weather is sunny with probability p, and cloudy with probability 1-p

• Data: 10 days; [sunny, cloudy, sunny, sunny, cloudy, sunny, sunny, cloudy, sunny,
sunny]

• MLE estimate of p: 0.7

How did we do that?

11

Probabilistic NLP terminology

Statistical model (i.e. generative story): A hypothesis about how the data was
generated

• E.g. “Every day is either sunny or rainy based on probability p, independent of previous
day”

• Always an abstraction!

Parameters: the specific numbers associated with the model

• E.g. the specific p we choose for sunny vs cloudy

• Often denoted as ɵ

Observations: the real-world data we use to determine the parameters of the model

• E.g. we saw 7 sunny says and 3 cloudy days, so we think p is 0.7

12

Probabilistic NLP terminology

Likelihood: The probability of a given outcome or outcomes given a parameterized model

• E.g. if we think p is 0.7, then what is P(weather=cloudy)

• E.g. if we think p is 0.7, what is P(weather1=cloudy, weather2=sunny,
weather3=sunny…)

Maximum likelihood estimation: Modeling paradigm where we choose ɵ to maximize
likelihood of observed data

• So if we see a particular sequence of 7 sunny days and 3 cloudy days…

• Likelihood if p=0.7 is: 0.77*0.33 = 0.0022

• Likelihood if p=0.5 is: 0.510=0.0010

13

MLE with conditional probability

Model:

• the weather is sunny with probability p and cloudy with probability 1-p

• I run with probability rs when it is sunny and probability rc when it is cloudy

Data: 10 runs

Counts:

14

sunny cloudy cloudy sunny cloudy sunny cloudy sunny sunny cloudy

run no run no run no run no run no run no run run no run run

Run Don’t

run

Sunny 2 4

Cloudy 1 3

p =

rs =

rc =

MLE with conditional probability

Model:

• the weather is sunny with probability p and cloudy with probability 1-p

• I run with probability rs when it is sunny and probability rc when it is cloudy

Data: 10 runs

Counts:

15

sunny cloudy cloudy sunny cloudy sunny cloudy sunny sunny cloudy

run no run no run no run no run no run no run run no run run

Run Don’t

run

Sunny 2 4

Cloudy 1 3

p = 2+4 / (2+4+1+3) = 6/10 = .6

rs = 2 / (2+4) = 2/6 = 0.33

rc = 1 / (1+3) = 1/4 = 0.25

Probabilistic language
modeling

Unigram model

Basic idea: probability of a given word w depends only on its overall frequency within the
corpus

• So the probability of a given text is the product of the individual word probabilities

Similar to bag-of-words in that it doesn’t respect word order, but bag-of-words isn’t
explicitly probabilistic

17

Bigram model

Basic idea: the probability of word i depends only on word i-1

Example: “I am” is more likely than “I is”

18

What can we do with a language model?

Two main things:

1. Generate new text

2. Assess the likelihood of existing text

19

Code description Notebook headings

Manually creating an N-gram language model

20

• Use manual token counting to generate
a conditional probability table (CPT)
representing a bigram language model

Generating text

Once we have a MLE estimate model, we can generate text by just sampling from our
model one word at a time

We can randomly sample, or take the most probable word at each step

We can stop after N tokens, or when we hit some stopping condition (like a [STOP] token,
or a “.”)

21

Code description Notebook headings

Manually generating text

22

• Using our CPT to generate new text
sequences

Assessing text likelihood

Given our model, we can calculate the likelihood that a given text was produced by the
model.

Example: Bigram model

p(“this is a sentence .”) = p(this|[START])p(is|this)p(a|is)p(sentence|a)p(.|sentence)

Note that this is just the chain rule of conditional probability in action.

23

Log-likelihood

Consider trying to actually calculate the likelihood of a sequence:

p(“this is a sentence .”) = p(this|[START])p(is|this)p(a|is)p(sentence|a)p(.|sentence)

 = 0.01 * 0.03 * 0.1 * 0.0001 * 0.003 = 0.000000000009

Taking a product of a bunch of small numbers while quickly become very small and strain
the limits of variable precision, leading to underflow.

So, we typically instead calculate the log-likelihood of texts, by calculating the sum of
the logs of the token-token probabilities.

logL(“this is a sentence .”)

= log(p(this|[START]))+log(p(is|this))+log(p(a|is)p(sentence|a))+log(p(.|sentence))

= log(0.01) + log(0.03) + log(0.1) + log(0.0001) * log(0.003)

= -4.6 + -3.5 + -2.3 + -9.2 + -5.8

= -25.4 24

Perplexity

Perplexity is a metric for comparing the success of two language models over a given
corpus. It consists mostly of calculating the average log-likelihood of the corpus text, for
that model.

25

https://blog.uptrain.ai/decoding-perplexity-and-its-significance-in-llms/

Code description Notebook headings

Log-likelihood and perplexity

26

• Using our CPT to assess the likelihood of
sequences of text, both one token at a
time and all together.

• Example of calculating overall perplexity
of the model

Smoothing

Any model bigger than a unigram model suffers from sparsity issues that make certain
sequences impossible, and screws with all the math

Example: “was delightful” is an impossible bigram in our toy corpus because those two
words never happen to occur together, even though they very much could.

Solution: add some smoothing to the model which makes any bigram possible (if not
likely)

27

Code description Notebook headings

Smoothing

28

• Example of simple Laplace Smoothing
over our model

Case study: Identifying email author

I put together a case study of how you can use a language model, by creating a dataset of
2000 emails written by each of 10 people, drawn from the Enron Email Dataset.

My goal is: given an anonymous email like "you are a huge jerk and I hate you”, could I use
my language model(s) to identify who was most likely to have written it, and why?

My basic workflow is:

• Train a language model on the whole corpus

• Train a language model on each known individual

• Assess whose personal language model was most likely to have generated the
anonymous email

• Compare individual word likelihoods with the global model to try to explain why that
person was more likely.

29

Code description Notebook headings

NLTK & Anonymous email case study

30

• Downloading and preprocessing Enron
Email Dataset

• Showing how to use NLTK to extract N-
grams

• Training bigram language models for
each distinct author in the corpus

• Using a max-likelihood approach to
identify which author wrote a nasty
anonymous email

N-gram models

Unigram model:

Bigram model:

Trigram model:

…and so on. But what’s the problem? What stops us from conditioning on every previous
token?

31

N-gram models

Unigram model:

Bigram model:

Trigram model:

…and so on. But what’s the problem? What stops us from conditioning on every previous
token?

• data sparsity

• # of parameters
32

Concluding thoughts

Probabilistic modeling of text: count word occurrences and normalize to conditional
probability distributions

Differing context sizes

• Unigrams: words occur independently

• Bigrams: words depend only on previous word

• Trigrams: words depend on previous two words

• etc.

Two important tasks

• Generate new text

• Assess text likelihood under model

33

Discussion question: how to do classification

with these abilities?

	Slide 1: Basic statistical language modeling
	Slide 2: Last lecture
	Slide 3: Probability review
	Slide 4: Random variables
	Slide 5: Discrete distributions
	Slide 6: Joint probability and product rule
	Slide 7: Conditional probability
	Slide 8: Chain rule
	Slide 9: Conditional probability table
	Slide 10: Maximum-likelihood probabilistic modeling
	Slide 11: Maximum-likelihood probabilistic modeling
	Slide 12: Probabilistic NLP terminology
	Slide 13: Probabilistic NLP terminology
	Slide 14: MLE with conditional probability
	Slide 15: MLE with conditional probability
	Slide 16: Probabilistic language modeling
	Slide 17: Unigram model
	Slide 18: Bigram model
	Slide 19: What can we do with a language model?
	Slide 20: Manually creating an N-gram language model
	Slide 21: Generating text
	Slide 22: Manually generating text
	Slide 23: Assessing text likelihood
	Slide 24: Log-likelihood
	Slide 25: Perplexity
	Slide 26: Log-likelihood and perplexity
	Slide 27: Smoothing
	Slide 28: Smoothing
	Slide 29: Case study: Identifying email author
	Slide 30: NLTK & Anonymous email case study
	Slide 31: N-gram models
	Slide 32: N-gram models
	Slide 33: Concluding thoughts

