Word Vectors

CS 759/859 Natural Language Processing Lecture 10

Samuel Carton, University of New Hampshire

Last lecture

Feedforward neural nets
Backpropagation

GPU operations on tensors
Training on GPU

Pytorch Lightning

* LightningModule
 Trainer

Data sparsity

A big problem with everything we’ve done so far is that our data is sparse and the models
always learn from scratch

* e.g.learning that “idiot” = toxicity doesn’t learn that “moron” = toxicity
* e.g. learning that “wonderful” = positive doesn’t learn that “great” - positive

This is limiting. It means that models can only learn from what’s in front of them and can’t
leverage basic knowledge of the language.

Also, big sparse count/TFIDF matrices are a pain to work with, computationally

How to fix?

Sparse unigram matrices @

Consider “He is an idiot” vs. “They are morons” Rest of the vocabulary

* Pretty similar! r A\ ~
he they IS are an idiot moron | ...

“Heis anidiot” 1 0 1 0 1 1 0 0...

“They are morons” |0 1 0 1 0 0 1 0.

Cosine similarity will be rated as 0 because there’s no overlap in unigrams

A;B;
A B Z

A
[INIEI \/Z 32

Reminder: cosine similarity = S¢ (A, B) := cos(f) =

Distributional hypothesis

We know that “moron” and “idiot” are synonymous... but how does that synonymy

manifest in a big corpus of text?
e Such as e.g. the entirety of Reddit

What can we notice here about the way
people use ‘idiot’ vs. ‘moron’?

Am I an idiot? (scitinformationTechnology)
submitted 6 days ago by

IR How do | stop being a moren?

Weird post I know, but I genuinely need some advice.

Recently I've not been able to focus on readings or speak coherently in class. It feels like whatever I say always
comes out like gibberish. The other day I said a sentence in class completely out of grammatical order and couldn't
correct myself (English is my first and only language). I didn't use to be this way, but recently I just feel like a total
moron no matter what I do.

Additionally I've been experiencing slapstick levels of clumsiness-- knocking over stuff, tripping on nothing,
forgetting to give someone back their stuff even when I write a million reminders, getting stuck in my winter coat
(don't ask how, I don't know).

I've also been getting crazy migraines recently and can barely think clearly anymore. I don't do drugs, don't drink
much, and get ok amounts of sleep all things considered.

So idk what this is really, but how do I stop being a moron and get back to how I used to be? (Or should I just go
see a doctor lol?)

14 comments

Long story short i'm a veteran that went back to school. Im about to graduate with my BS in IT, and I truly don't think
I remember anything Ive actually learned. I managed to get all A's and B’s, but this was more important to me than
actually learning the material. Im honestly scared, scared that I wont be ready for any jobs. I've been applying to IT

internships but I fear I won't get past interviews.

What can I do to prepare for IT internship interviews, or just the job market in general?

48 comments share save hide report crosspost

Distributional hypothesis

Basic idea: in a given corpus of text, similar words tend to occur in similar contexts
Examples:
“You are a gigantic [moron|idiot|dumb-dumb].”

“That was a really [moronic|idiotic|dumb] thing to do.”

“It was a [wonderful|great|stupendous] movie.”
“The casting was just [wonderful|great|stupendous].”

How to leverage?

Co-occurrence vectors @

Idea: what if instead of representing an individual word as a column in a unigram vector,
we instead represent it as the words it tends to co-occur with, in a big corpus?

he she |is are an you |a
“idiot” 1 0 1 1 2 1 0 0...
“moron” 10 |1 Jo 1 o [1 |2 Jo. corpus:
...he is an idiot...
Not perfect, but at least we can get a non-zero cosine distance now ...l am a moron...
...you are an idiot...
But how to get a co-occurrence vector for a whole text? ...you are a moron...
» Just add up the ones for each word!

Are we done?

Distributional hypothesis in SST-2

80

Code description Notebook headings

Reading and preprocessing SST-2 Reading and preprocessing SST-2

Toy example of constructing a co-
occurrence matrix

Looking at word co-occurrences for Inspecting "bad" vs "terrible" in SST-2
“bad” and “terrible” in SST-2

Toy co-occurence matrix example

Achieving density

Not quite. Co-occurrence vectors are still
going to be very sparse, and as wide as
the vocabulary, so computationally a
pain to work with.

Is there anything we can do here to
somehow map words to a small, dense
vector representation that includes that
useful distributional information?

Intermediate representations @

A key conceptin neural nets is intermediate representations, which are the output from
some internal layer of the model, before the data has undergone its full transformation
into class logits (and subsequently a prediction).

A big part of understanding neural nets is learning how to reason: given that the model
has this structure, and its overall objective function is this, then what properties will this
intermediate representation have after the model has been trained?

10

Example: FFNs @

A good example of this idea comes from comparing a feedforward neural net against a
logistic regression model.

o _ Feedforward neural net
Logistic regression

4

T

1 @

)
@ //\Z\M
V\’ L’\‘I l/).' ,
P b X o=y
: L}

N \,\0 l/-\c 0 0

"Hﬂ 'Srl ‘\Q'“ \\’L}K”) g"ul-j:n.‘ 11

Example: FFNs @

We can think of any neural net with an output layer as basically performing a bunch of
transformations on the input data before finally giving it to a logistic regression model

o _ Feedforward neural net
Logistic regression

"Hﬂ 'Srl ‘\Q'“ \\’L}K”) g"ul-j:n.‘ 1

Linear separability

Reminder: when you train a logistic regression model, you are learning the position of a
hyperplane in the feature space that best separates the two classes.

* Itwill tend to work better if the data is naturally linearly separable

Non linearly separable Linearly separable
N -Not Sold
S -Sold /
N
NN " I\IN) S
Price S NS SN Price NN NN s S
S
N SN N s S
S S
NSSg s N/ Sgs
N S N / S
Area Area

https://www.oreilly.com/library/view/machine-learning-quick/9781788830577/69e8b23d-
701f-4be3-9949-373b98962b43.xhtml

Example: FFNs @

So, we know that the output layer of the FFN
is basically a logistic regression model that
will work well if the input is linearly separable Feedforward neural net

And let’s pretend that we trained both kinds
of model, and found that the FFN works better
than the LR model (lower loss, higher
accuracy).

* Not the case for my code example, | know

What does mean about intermediate values
hy = (hO, R}, ..., KN}? \ y

14

Example: FFNs

So, we know that the output layer of the FFN
is basically a logistic regression model that
will work well if the input is linearly separable

And let’s pretend that we trained both kinds
of model, and found that the FFN works better
than the LR model (lower loss, higher
accuracy).

* Not the case for my code example, | know

What does mean about intermediate values
h; = {h?,hl, ...,h’l"}?

They must be (more) linearly separable
(than the original x)!

Feedforward neural net

15

Example: FFNs @

So: one interpretation of any neural classifier is that it’s a machine for transforming the
input data into a final representation that is more linearly separable than it was initially

Feedforward neural net

Logistic regression

A
Y
|
@

16

Word vector models @

Basic idea: generate a dense intermediate vector representation of a word that is
predictive of the contexts it is likely to occurin.

« Andif (1) the training succeeds, and (2) the distributional hypothesis is true, then
similar words should map to similar intermediate representations

Basic workflow:
1. Train word vectors on big unlabeled corpus
2. Save as big mapping of word = vector

3. Usethese pretrained vectors as starting point for specific tasks
e Classification
 Language modeling
 Translation
« etc.

17

Word2Vec

arXiv

»
Mikolov et al. (20 13) 7\ nttps:/arxiv.org> cs

Efficient Estimation of Word Representations in Vector Space

by T Mikolov - 2013 - Cited by 40402 — Access Paper: Download a PDF of the paper titled
Efficient Estimation of Word Representations in Vector Space, by Tomas Mikolov and 3 other ...

Basic idea: Train a feed-forward neural network to take unigram representation of word
(i.e. the size of the vocabulary), squish it down to small dimension (e.g. 50), then predict
unigram representation of co-occurring words (or vice-versa)

18

Word2Vec

“You are a gigantic [moron|idiot|dumb-dumb].”

Ul Voceh sz

19

Word2Vec @

Basic algorithm:

1. Takebigunlabeled corpus, e.g. all of Wikipedia, and divide it into a series of (word,
context) pairs

2. Choose an embedding size (50, 100, 200, 300, etc.)
3. Train a 2-layer feedforward model with two layers:
* Encoder: vocab size x embedding size
* Decoder: embedding size x vocab size

4. Use gradient descent to train model to encode words, then decode to predict context
(or vice versa)

* Usecross entropy for loss function
5. When you are done training:
* Encoder should map similar words to similar intermediate representations

* Runencoder over entire vocabulary to get a dense vector for each word, then
save for later

« Throw away decoder 2

Word2Vec: two variants @

There are actually two variants of Word2Vec:

* Continuous bag-of-words (CBOW): Takes in context, predicts word
» Fasterto train, better for frequent words, I’m told

» Skip-gram: Takes in word, predicts context
» Better for rare words, apparently

7~ @)
- th-z
-2 \9 CBOW SKIPGRAM/ st
7N
Wi.1 :\ Wi Wi ,-@Wt-i
—/ How to choose?
7\
Wit : Wit
Nears?’
7
W . Wi.2
1+2 ‘
2

https://machinelearninginterview.com/topics/natural-language-processing/what-is-the-

difference-between-word2vec-and-glove 21

GloVe embeddings @

For pretrained embedding vectors, use GloVe instead:
* Pennington et al. (2014), https://nlp.stanford.edu/projects/glove/

Trained by doing a (modified) matrix factorization of giant N x N word-co-occurrence matrix
* Requires the use of SGD rather than SVD, so it’s sort of a hybrid

fealones—7 o GloVe loss function
i
niepl M fealire mdert | v - ~)
= D Feotin 7(% o J= " £ (Xis) (W + b; + b — log X;;)
_.2 Meodn & & e | i,j=1
5
| Word2Vec loss function (per GloVe paper)
% f = Z Xi (Wl-Tﬁ/j — log Xl‘j)z
tHodmx 7

https://machinelearninginterview.com/topics/natural-language-processing/what-is-the- =2

difference-between-word2vec-and-glove

https://nlp.stanford.edu/projects/glove/

Word vectors capture word similarity @

In both GloVe and Word2Vec, similar words will end up with vectors that are close in
vector space

0. frog

. frogs

2. toad

3. litoria

4. leptodactylidae

H.rana .
6. lizard 3. litoria 4. leptodactylidae 5.rana 7. eleutherodactylus

7. eleutherodactylus

https://nlp.stanford.edu/projects/glove/

23

Word vectors capture analogy

Gender Word senses
T T T T T T T T T T T 05 T T T T T T
0.5+ r heiress 7] _ — — slowest
| e
\ 0.4} i = -
0.4 ; - e
e - “slower _ — — — — —+shortest
'nlece I - countess 7 e
0.3F *aunt | /- ; duchess 03k »7 7 'shorter N
Telt.istell| | ', ’ slow« -
& 7
0.2 I ! /I -empress &
- I S P short~
| | | i 7 02+ -]
ail i » madam ¢ g -
9 . 1
l heir / Iy
oF I neleew / / / =1 0.1f]
[| / ;)
-0.1F | uncle | / vqueeearl{/ i s)
! brother ! / I /dduke or SOSIONgerT T TR S o e i strongest §
-0.2+ I / l /’ . ,
| / | 4 o louaer T S e 2
[/ | ‘emperor strong ¥ - loudest
~0.3}F ; p , - -0.1 Ioud/,‘_ _______ =
/ / ’ 5 ?le"if B mEmeesms G — clearest
0.4 / / [- i = SOlEF™"TT T S e i o g softest
. 2 3k
I {sir l -0.2 clearj/:/ﬁarT(e?**——-——_‘__ |
-0.5r ‘man lking - soft « —* darkest
-~
dark
1 1 1 I 1 1 1 1 1 L L -0.3 L L | | ! I | | |
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

24

https://nlp.stanford.edu/projects/glove/

GloVe vectors

80,

Code description

* Loading GloVe vectors in using the
Gensim library

« Demonstrating some of the semantic
properties of GloVe vectors

Notebook headings

Loading GloVe vectors with Gensim

Properties of GloVe vectors

25

Using word vectors in a classifier @

When we first talked about vectorizing and comparing text, we didn’t have a solution for
the problem of synonymy. Now we do!

...but we also have a problem: In a count or TF-IDF matrix, each word corresponds with a
column. So when we want to vectorize a whole text, we just put nonzero values in the
columns corresponding with the words in the text.

But now with word vectors, each word corresponds with a whole dense vector. So now,
how do we represent a whole text?

44

Vector centroids

Simplest solution: if each word in a text corresponds to a vector/point in n-dimensional
space, then just find the “middle” point of that that point cloud, aka the centroid

| romance | romance
L J @
@ ®
:’ 1.
: ’.llke » like
\ ‘Q = . y-
action ’ " @ prefer action ¢ for”” ® prefer
o---%
flicks® ® flicks® @
movies movies
® UAEm for “I prefer romance flicks” ® OpEm for “I prefer romance flicks”
@ UAEm for “I like action movies” ® OptEm for “I like action movies”
“«—* Distance between two embeddings <+ Distance between two embeddings

https://www.frontiersin.org/journals/applied-mathematics-and-statistics/articles/10.3389/fams.2019.0006 7/full

<UNK> and <PAD> vectors @

Additionally, when we want to use the built-in PyTorch Embedding layer, we have to have

some way of representing padding tokens, as well as tokens that do not exist in the
vocabulary.

More sophisticated tokenizers will do this for us automatically, but for the time being we
have to just manually add vectors for this into our vector model.

46

Classification with word vectors

80

Code description Notebook headings
° Example Of PyTOrCh model that makes Using word vectors in a classifier
use of a vector model, and then
represents each text as the centroid of Dataset
its constituent word vectors
Dataloader
Model

Trainer

47

Concluding thoughts

Intermediate representations

Word vector models

* Word2Vec

« CBOW

» Skip-gram
* Glove

Word vectors in classification
* Padding

* Collation

* Centroids

48

	Slide 1: Word Vectors
	Slide 2: Last lecture
	Slide 3: Data sparsity
	Slide 4: Sparse unigram matrices
	Slide 5: Distributional hypothesis
	Slide 6: Distributional hypothesis
	Slide 7: Co-occurrence vectors
	Slide 8: Distributional hypothesis in SST-2
	Slide 9: Achieving density
	Slide 10: Intermediate representations
	Slide 11: Example: FFNs
	Slide 12: Example: FFNs
	Slide 13: Linear separability
	Slide 14: Example: FFNs
	Slide 15: Example: FFNs
	Slide 16: Example: FFNs
	Slide 17: Word vector models
	Slide 18: Word2Vec
	Slide 19: Word2Vec
	Slide 20: Word2Vec
	Slide 21: Word2Vec: two variants
	Slide 22: GloVe embeddings
	Slide 23: Word vectors capture word similarity
	Slide 24: Word vectors capture analogy
	Slide 25: GloVe vectors
	Slide 44: Using word vectors in a classifier
	Slide 45: Vector centroids
	Slide 46: <UNK> and <PAD> vectors
	Slide 47: Classification with word vectors
	Slide 48: Concluding thoughts

