
Preprocessing, vectorizing, and
comparing text
CS 780/880 Natural Language Processing Lecture 3

Samuel Carton, University of New Hampshire

Representing text numerically

Before we try to do anything computational with text, we need to create a representation
our computer can actually work with

We often want this to include preprocessing and normalization that makes it easier to
treat similar texts similarly

E.g.

• Case

• Stemming

• Tokenization

• Synonymy

2

Case study: text similarity

Very frequent basic NLP task: how similar are these two texts?

Especially in comparison to these other two texts?

Why might we want to do this?

• Web search

• Classification based on similar labeled examples

• Plagiarism detection

• Etc.

I will use text similarity as a motivating task for preprocessing and vectorizing text.

3

Our corpus

Four short movie reviews:

Review 0: "The film was a delight--I was riveted."

Review 1: "It's the most delightful and riveting movie."

Review 2: "It was a terrible flick, the worst I have ever seen."

Review 3: "I have a feeling the film was recut poorly.“

Question: Which review is most similar to review 0?

4

Our corpus

Four short movie reviews:

Review 0: "The film was a delight--I was riveted."

Review 1: "It's the most delightful and riveting movie."

Review 2: "It was a terrible flick, the worst I have ever seen."

Review 3: "I have a feeling the film was recut poorly.“

Answer: review 1.

• But can we come up with a similarity metric that reflects that fact?

5

Jaccard similarity

Very basic discrete similarity metric.

Given two sets, divide size of
intersection by size of union

6https://en.wikipedia.org/wiki/Jaccard_index

Bag-of-words representations

Simplest representation of text is as a “bag-of-words” without respect to order

This is also called a unigram or 1-gram representation.

But how to identify distinct unigrams in text?

• Naïve solution: split on whitespaces

• We’ll improve on this in a bit

Example:

"The film was a delight--I was riveted.“ →

['The', 'film', 'was', 'a', 'delight--I', 'was', 'riveted.']

7

Jaccard similarity for reviews 0 and 2

Review 0: "The film was a delight--I was riveted.“ →

['The', 'film', 'was', 'a', 'delight--I', 'was', 'riveted.’]

Review 2: "It was a terrible flick, the worst I have ever seen." →

['It', 'was', 'a', 'terrible', 'flick,', 'the', 'worst', 'I', 'have',

'ever', 'seen.’]

Intersection: {'was', 'a’}

Union:

{'terrible', 'flick,', 'seen.', 'riveted.', 'worst', 'I', 'The', 'a',

'delight--I', 'the', 'It', 'have', 'was', 'film', 'ever’}

Jaccard similarity: 0.133

8

Jaccard similarity for reviews 0 and 1

Review 0: "The film was a delight--I was riveted.“ →

['The', 'film', 'was', 'a', 'delight--I', 'was', 'riveted.’]

Review 1: "It's the most delightful and riveting movie.“ →

["It's", 'the', 'most', 'delightful', 'and', 'riveting', 'movie.’]

Intersection: [none]

Union:

{"It's", 'delightful', 'and', 'the', 'most', 'was', 'film',

'riveted.', 'movie.', 'The', 'riveting', 'a', 'delight--I’}

Jaccard similarity: 0

9

What went wrong here?

Preprocessing text

Various transformations we can perform on text in order to iron out superficial differences
and home in on the types of similarity we are interested in

What preprocessing you do depends on your application

Basics include:

• Lower-casing

• Removing punctuation

• Removing common words, aka “stopwords”

• Removing unicode characters

• Often needed for web text

• And a bunch of other stuff. Often some trial-and-error here

10

Lower-casing

Very simple and obvious thing to do, but smooths out some differences

Review 0: "The film was a delight--I was riveted.“ →

[‘the', 'film', 'was', 'a', 'delight--i', 'was', 'riveted.’]

Review 1: "It's the most delightful and riveting movie.“ →

[“it's", 'the', 'most', 'delightful', 'and', 'riveting', 'movie.’]

Intersection: {'the’}

Union:

{“it's", 'delightful', 'and', 'the', 'most', 'was', 'film',

'riveted.', 'movie.', 'riveting', 'a', 'delight--i’}

Jaccard similarity: 0.083
11Better, but we’re still not beating .133

Lower-casing

Simplest way to do it in Python is just to use str.lower()

Not always appropriate!

• Semantic differences: “I told Frank to close up the shop” vs. “I have to be frank with
you.”

• Syntactic differences: “The ….” vs. “the …”

Rule of thumb:

• Until we get to Transformer-based models, lower-casing should be a standard part of
your preprocessing pipeline.

12

Tokenization

Tokenization: splitting up a string sequence like into its component tokens

• Token: whatever pieces we are dividing text into

• Often equates to individual words and pieces of punctuation

• But transformer-based models use pieces of words

• Not as trivial as just splitting on whitespace

Naïve example:

Review 0: "The film was a delight--I was riveted.“ →

[‘the', 'film', 'was', 'a', 'delight--i', 'was', 'riveted.’]

More sophisticated example:

Review 0: “the film was a delight--I was riveted.“ → ['the', 'film', 'was', 'a',

'delight', '--', 'i', 'was', 'riveted', '.’]

13

NLTK

Natural Language ToolKit (NLTK): https://www.nltk.org/index.html

Most popular Python text processing package

Competes with SpacY, which is also good

Has lots of basic NLP functionality: tokenization, stemming, parsing, etc.

• We’ll only be doing tokenization and stemming

14

NLTK tokenization

15

Full documentation: https://www.nltk.org/api/nltk.tokenize.html

https://colab.research.google.com/drive/1wkRxJvA8GPuoSXwJmlNTBcaKzxzXYTo3#scrollTo=jpRpAdf6PQYw

Tokenization

Review 0: "The film was a delight--I was riveted.“ →

['the', 'film', 'was', 'a', 'delight', '--', 'i', 'was', 'riveted',

'.’]

Review 1: "It's the most delightful and riveting movie.“ →

[“it's", 'the', 'most', 'delightful', 'and', 'riveting', 'movie.’]

Intersection: {‘the’, ‘.'}

Union:

{‘it', "'s", 'delightful', 'and', 'most', 'was', 'film', 'riveted',

‘.', 'movie', 'riveting', 'a', 'delight’, ‘--', ‘i’}

Jaccard similarity: 0.133

16

So now we’ve matched .133… are we done?

Stemming

Stemming: chop off affixes that distinguish plural versus singular and different tenses of
words

• So we can match e.g. ‘delight’ with ‘delightful’, ‘riveting’ with ‘riveted’

Example:

“the film was a delight--I was riveted.“
tokenization →['the', 'film', 'was', 'a', 'delight', '--', 'i', 'was', 'riveted', ‘.’]

stemming →['the', 'film', 'wa', 'a', 'delight', '--', 'i', 'wa', 'rivet', '.’]

Contrast with lemmatization, which would recover the dictionary versions of the words

• But if all we’re doing is comparing, why would we care?

• So in practice, lemmatization is hardly ever done

17

NLTK stemming

Again, very simple

18

https://colab.research.google.com/drive/1wkRxJvA8GPuoSXwJmlNTBcaKzxzXYTo3#scrollTo=IALw4yP

RffmY

How do NLTK tokenization & stemming work

Default options for NLTK are Punkt tokenizer and Porter stemmer
• But there other options

Punkt tokenizer
• Uses a trained ML model to recognize where to split up sentences
• Trained on a big corpus of English-language text
• https://www.nltk.org/api/nltk.tokenize.punkt.html

Porter stemmer
• Uses a bunch of hand-written rules that are specific to the English language
• Old algorithm (1979)
• https://tartarus.org/martin/PorterStemmer/

You can treat these as black boxes for now, though we’ll learn more about modeling as we
move forward.

19

https://www.nltk.org/api/nltk.tokenize.punkt.html
https://tartarus.org/martin/PorterStemmer/

Jaccard similarity (after preprocessing)

Review 0: "The film was a delight--I was riveted.“ →

['the', 'film', 'wa', 'a', 'delight', '--', 'i', 'wa', 'rivet', '.’]

Review 1: "It's the most delightful and riveting movie.“ →

['it', "'", 's', 'the', 'most', 'delight', 'and', 'rivet', 'movi',

'.’]

Intersection: {'delight', 'rivet', '.', 'the'}

Union:

{"'", 'movi', 'most', 'delight', '--', '.', 'the', 'a', 'it', 'and',

'rivet', 'film', 'i', 's', 'wa’}

Jaccard similarity: .267

20

Yay!

Jaccard similarity (after preprocessing)

Review 0: "The film was a delight--I was riveted.“ →

['the', 'film', 'wa', 'a', 'delight', '--', 'i', 'wa', 'rivet', '.’]

Review 2: "It was a terrible flick, the worst I have ever seen." →

['it', 'wa', 'a', 'terribl', 'flick', ',', 'the', 'worst', 'i',

'have', 'ever', 'seen', '.’]

Intersection: {'the', 'wa', 'i', '.', 'a’}

Union:

{'flick', 'delight', 'seen', 'worst', '--', '.', 'the', 'a', 'it',

'rivet', 'have', ',', 'film', 'terribl', 'i', 'ever', 'wa’}

Jaccard similarity: .294

21

…dang.

Problem

"The film was a delight--I was riveted.”

vs.

"It's the most delightful and riveting movie.”

→Jaccard similarity .267

Intersection:{'delight', 'rivet', '.', 'the'}

"The film was a delight--I was riveted.”

vs.

"It was a terrible flick, the worst I have ever seen."

→ Jaccard similarity .294

Intersection: {'the', 'wa', 'i', '.', 'a’}

What’s the problem?
22

Vectors

To go beyond very simple preprocessing, you really need to vectorize your text.

A vector is a 1-dimensional set of values, usually numeric.

Examples:

[0.1 8.2 11.7 0.5]

[1 2 3 4 5]

[True False True True False]

[1 0 0 1 1 0]

Different from a list because you are generally operating on the whole vector at once
rather than iterating through it.

23

Vector operations

In many ways can be treated a single number

Addition: [1 2 3] + [4 5 6] = [5 7 9]

Subtraction: [1 2 3] - [4 5 6] = [-3 -3 -3]

Division: [1 2 3] / [4 5 6] = [0.25 0.4 0.5]

Multiplication: [1 2 3] * [4 5 6] = [4 10 18]

Power:[1 2 3] ^ 2 = [1 4 9]

But there are certain operations that are only defined for vectors:

Dot product: [1 2 3] · [4 5 6] = sum([1 2 3] * [4 5 6]) = 32

There is a lot of stuff that can be done with vectors (see: all of linear algebra)

We will focus on just what we need to know to do the things we want to do
24

Vectors in Python

• Not implemented in standard Python

• Implemented in popular and ubiquitous numpy library

• numpy typically imported as np

25
https://colab.research.google.com/drive/1wkRxJvA8GPuoSXwJmlNTBcaKzxzXYTo3#scrollTo=sVTukDn_YyXD

Representing bag-of-words as a vector

Basic idea: each text is a vector the size of the
vocabulary, with the number in each slot
representing the count of that word in that text

26

"The film was a delight--I was riveted.” →

the 1.0

film 1.0

wa 2.0

a 1.0

delight 1.0

-- 1.0

i 1.0

rivet 1.0

. 1.0

it 0.0

' 0.0

s 0.0

most 0.0

and 0.0

movi 0.0

terribl 0.0

flick 0.0

, 0.0

worst 0.0

have 0.0

ever 0.0

seen 0.0

feel 0.0

recut 0.0

poorli 0.0

Jaccard similarity for (binary) vectors

We can (hackily) still do Jaccard similarity if we binarize our vectors to be only 0 and 1

But it’s probably good to learn a similarity metric that can handle continuous values

27

Cosine similarity

Given two vectors, defined as the dot product of the vectors divided by the product of the
magnitudes of the two vectors

28

https://en.wikipedia.org/wiki/Cosine_similarity

https://www.oreilly.com/library/view/statistics-for-machine/9781788295758/eb9cd609-e44a-40a2-9c3a-f16fc4f5289a.xhtml

Jaccard vs cosine similarity

Text 1: The film was a delight--I was riveted.

Text 2: It's the most delightful and riveting movie.

Count vector 1: [1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

Count vector 2: [1. 0. 0. 0. 1. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

Jaccard similarity: 0.267

Cosine similarity: 0.365

29

Jaccard vs cosine similarity

Text 1: The film was a delight--I was riveted.

Text 2: It was a terrible flick, the worst I have ever seen.

Count vector 1: [1. 1. 2. 1. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

Count vector 2: [1. 0. 1. 1. 0. 0. 1. 0. 1. 1. 0. 0. 0. 0. 0.

1. 1. 1. 1. 1. 1. 1. 0. 0. 0.]

Jaccard similarity: 0.294

Cosine similarity: 0.480

Are we done? (still no)

30

TF-IDF

TF-IDF: Term Frequency – Inverse Document Frequency

Basic idea: When we make a vector representation of a bag of words, upweight rare
words and downweight common words

The value at slot i for a given sequence s should be the term frequency of word i within s,
divided by the document frequency of word i in the corpus as a whole

31

Manual TF-IDF: counting tokens

32

https://colab.research.google.com/drive/1wkRxJvA8GPuoSXwJmlNTBcaKzxzXYTo3#scrollTo=qOs8zZqmQxC8

Manual TF-IDF: counting tokens

33

Term counts Document counts

Manual TF-IDF: converting to frequencies

34

https://colab.research.google.com/drive/1wkRxJvA8GPuoSXwJmlNTBcaKzxzXYTo3#scrollTo=o7bdFZ2-VEsy&line=3&uniqifier=1

Manual TF-IDF: converting to frequencies

35https://colab.research.google.com/drive/1wkRxJvA8GPuoSXwJmlNTBcaKzxzXYTo3#scrollTo=Ri22weEFmgMn&line=6&uniqifier=1

Easy TF-IDF: Scikit-Learn

Repeat all the preprocessing

36
https://colab.research.google.com/drive/1wkRxJvA8GPuoSXwJmlNTBcaKzxzXYTo3#scrollTo=epXg1HS9Staq

Easy TF-IDF: Scikit-Learn

Then create and use a TfidfVectorizor (or a CountVectorizer if you just want counts)

37

Cosine similarity revisited

Text 1: The film was a delight--I was riveted.

Text 2: It's the most delightful and riveting movie.

Vector 1: [0.1 0.2 0.267 0.133 0.2 0.4 0.133 0.2 0.1 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

Vector 2: [0.1 0. 0. 0. 0.2 0. 0. 0.2 0.1 0.2 0.4 0.4 0.4 0.4 0.4 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

Cosine similarity: 0.162

Text 1: The film was a delight--I was riveted.

Text 3: It was a terrible flick, the worst I have ever seen.

Vector 1: [0.1 0.2 0.267 0.133 0.2 0.4 0.133 0.2 0.1 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

Vector 2: [0.077 0. 0.103 0.103 0. 0. 0.103 0. 0.077 0.154 0. 0. 0. 0. 0. 0.308 0.308 0.308 0.308 0.154

0.308 0.308 0. 0. 0.]

Cosine similarity: 0.135

38

So now we’ve finally (finally!) come up with a similarity

metric that captures our intuitions

Other similarity/distance metrics

Euclidean: Euclidean (l2) distance between the two vectors in vector space

• https://en.wikipedia.org/wiki/Euclidean_distance

• https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.euclidean
.html (scipy implementation)

Manhattan distance: L1 distance between the two vectors in vector space

• https://en.wikipedia.org/wiki/Taxicab_geometry

• https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.cityblock.
html#scipy.spatial.distance.cityblock

Others: https://docs.scipy.org/doc/scipy/reference/spatial.distance.html#module-
scipy.spatial.distance

• But really, 95% of people use Jaccard, Euclidean or cosine distance

39

https://en.wikipedia.org/wiki/Euclidean_distance
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.euclidean.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.euclidean.html
https://en.wikipedia.org/wiki/Taxicab_geometry
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.cityblock.html#scipy.spatial.distance.cityblock
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.cityblock.html#scipy.spatial.distance.cityblock
https://docs.scipy.org/doc/scipy/reference/spatial.distance.html#module-scipy.spatial.distance
https://docs.scipy.org/doc/scipy/reference/spatial.distance.html#module-scipy.spatial.distance

Concluding thoughts

Review 0: "The film was a delight--I was riveted."

Review 1: "It's the most delightful and riveting movie."

Review 2: "It was a terrible flick, the worst I have ever seen.“

With preprocessing and frequency normalization, we conquered several of the problems
we identified at the beginning.

But what about synonymy (e.g. “film” versus “flick”)?

And what about word order?

And what if we’re more interested in sentence structure than lexical similarity?

40

	Slide 1: Preprocessing, vectorizing, and comparing text
	Slide 2: Representing text numerically
	Slide 3: Case study: text similarity
	Slide 4: Our corpus
	Slide 5: Our corpus
	Slide 6: Jaccard similarity
	Slide 7: Bag-of-words representations
	Slide 8: Jaccard similarity for reviews 0 and 2
	Slide 9: Jaccard similarity for reviews 0 and 1
	Slide 10: Preprocessing text
	Slide 11: Lower-casing
	Slide 12: Lower-casing
	Slide 13: Tokenization
	Slide 14: NLTK
	Slide 15: NLTK tokenization
	Slide 16: Tokenization
	Slide 17: Stemming
	Slide 18: NLTK stemming
	Slide 19: How do NLTK tokenization & stemming work
	Slide 20: Jaccard similarity (after preprocessing)
	Slide 21: Jaccard similarity (after preprocessing)
	Slide 22: Problem
	Slide 23: Vectors
	Slide 24: Vector operations
	Slide 25: Vectors in Python
	Slide 26: Representing bag-of-words as a vector
	Slide 27: Jaccard similarity for (binary) vectors
	Slide 28: Cosine similarity
	Slide 29: Jaccard vs cosine similarity
	Slide 30: Jaccard vs cosine similarity
	Slide 31: TF-IDF
	Slide 32: Manual TF-IDF: counting tokens
	Slide 33: Manual TF-IDF: counting tokens
	Slide 34: Manual TF-IDF: converting to frequencies
	Slide 35: Manual TF-IDF: converting to frequencies
	Slide 36: Easy TF-IDF: Scikit-Learn
	Slide 37: Easy TF-IDF: Scikit-Learn
	Slide 38: Cosine similarity revisited
	Slide 39: Other similarity/distance metrics
	Slide 40: Concluding thoughts

