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Last lecture

Key idea: Download pretrained transformer model, then fine-tune to particular task

Pretrained transformer models

• BERT, RoBERTa, XLNet, RoBERTa, DistilBERT, T5, GPT-X

Encoder-decoder, encoder-only, decoder-only

How to choose?

Looking forward:

• Zero- and few-shot learning

• Prompt engineering
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Lecture 17 prompt engineering

High-level introduction covering common problems with LLMs and common 
solutions

• No code, no practical details

Various problems:

• Hallucination

• Reasoning errors

• Ungrounded outputs

• Problem for robotics

• Boring output

• Biased outputs
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Various approaches:

• Retrieval-augmented generation

• Atlas

• Recitation-augmented generation

• Chain of thought prompting

• Faithful chain of thought prompting

• Do as I Can, not as I Say

• ReAct



Today: practical prompt engineering

How to actually construct prompts and use proprietary APIs

• Connecting to the OpenAI API

• Zero vs few-shot learning

• Exemplar choice

• Prompt design
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Training a (very) large language model

Four distinct steps in training a model like GPT3.5/4, GEMINI, Claude, etc.

1. Pick architecture

2. Language modeling

3. Instruction tuning

4. Reinforcement learning from human feedback (RLHF)
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Architecture

Contemporary models mostly decoder-only

• Pretty much just deep stacks of transformer self-attention 
layers

Lots of parameters

• BERT, GPT-2: 110 million

• GPT-3: 175 billion

• GPT-4: 1 trillion (?)
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Language modeling

1. Choose very large corpus of text, code, etc.

• Main companies very tight-lipped about exact pretraining dataset

• Often use some variant of the Common Crawl (https://commoncrawl.org/)

• Contents of most of the internet

2. Apply standard language modeling objective:

• I.e. teacher forcing 
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Instruction tuning

Basic idea: Take trained language model and fine-tune it on relatively small dataset of 
(instruction, response) pairs

• Bridges the gap between learning the language and learning how to take instructions

Examples:

• Natural Instructions: 193k instances derived from 61 existing NLP datasets
• Mishra, Swaroop, et al. "Cross-task generalization via natural language crowdsourcing instructions." arXiv preprint 

arXiv:2104.08773 (2021).

• Flan 2021: 15M examples of 1836 tasks derived from 62 existing NLP datasets (including 
SST02!)
• Longpre, Shayne, et al. "The flan collection: Designing data and methods for effective instruction 

tuning." International Conference on Machine Learning. PMLR, 2023.

For more details: Zhang, Shengyu, et al. "Instruction tuning for large language 

models: A survey." arXiv preprint arXiv:2308.10792 (2023).
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Reinforcement learning from human feedback

Basic idea: Have model generate multiple possible responses to a prompt, have humans 
label which one they prefer, use RL to encourage model to respond like that in the future. 

• Uses reinforcement learning, an alternative learning paradigm to supervised learning
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Final result

Once we do all these steps, we end up with a model that:

• Is very good at sounding right

• Can do lots of tasks without any actual training

• Only “knows” things that it happened to memorize from language modeling objective

• E.g. “New Hampshire’s nickname is The _______ State”

• Best at stuff with lots of support in the training data

• Has been “encouraged” via RLHF to not be racist or teach people how to make bombs

• But this is a pretty soft guardrail

In summary: very (surprisingly) powerful, but also very flawed, unreliable, and breakable
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Practical prompt engineering

There’s an increasing proliferation of LLMs available out there, for use with either 
graphical interfaces or APIs

• OpenAI/GPT-X: https://platform.openai.com/ 

• Google/GEMINI: https://ai.google.dev/ 

• Anthropic/Claude: https://www.anthropic.com/api 

Some free, some not. OpenAI API very much NOT free. But it’s the most popular and the 
one I am familiar with, so that’s what I’ll teach. 

Other APIs will be conceptually similar. 

11

https://platform.openai.com/
https://ai.google.dev/
https://www.anthropic.com/api


SST-2

The last time we’ll see it! Say a tearful goodbye.

Doing two things different from usual:

• Truncating to 100 items

• Converting label to text
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BERT baseline

Just as a basis for 
comparison, we can look at 
how a BERT-based 
classifier does on our 100-
item validation set sample:
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Installing OpenAI
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Authenticating with OpenAI
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Zero-shot prompt

The simplest possible prompt structure consists of: 1) instructions; 2) input document; 
and 3) space for generated output
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Calling the OpenAI API
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https://platform.openai.com/docs/api-reference/making-requests



Running 0-shot learning on our data
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Running 0-shot learning on our data
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Calculating 0-shot performance
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Few-shot prompt
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Few-shot prompt
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Few-shot prompt

An archetypal few-shot prompt looks something like the following:

1. Instructions

2. Exemplars

3. Final prompt (should have identical format to exemplars)
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Running 1-shot learning on our data
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Running 1-shot learning on our data
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Calculating 1-shot performance
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Calculating 5-shot performance
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Evaluating LLMs

As we can see from these high accuracy scores, we’ve essentially exhausted SST-2 as a 
useful benchmark for model accuracy. 

• Only “errors” we’re seeing are truly borderline cases where humans would disagree

• All subjective tasks (e.g. sentiment, moderation) have some of these, meaning 
accuracy ceiling is never truly 100%

So how do we come up with more meaningful evaluations of LLMs?

• More challenging tasks

• Main topic of next lecture
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Advanced prompting methods

In lecture 17 I went over a few advanced prompting techniques that have been introduced 
in the literature, including:

• Chain-of-thought prompting: improve logical reasoning

• Retrieval-augmented generation: reduce hallucination

• Recitation-augmented generation: reduce hallucination without doing actual 
retrieval

And so on. Lots of things people are experimenting with these days. See the following for 
more details:

Liu, Pengfei, et al. "Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language 

processing." ACM Computing Surveys 55.9 (2023): 1-35.
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Role-setting

Some people swear by “role-setting”, where before 
you give it any instructions, you give the model an 
“identity” to abide by

• This is how people have been “jailbreaking” the 
models.

Example from my submitted paper:
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Choice of exemplars
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Sometimes the exemplars can actually sabotage the 
model! So exemplar choice is a big deal 

• Understudied area. No good survey I can find.



Concluding thoughts

Zero and few shot learning

Anatomy of a prompt

Exemplar choice

Role-setting
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