
Practical prompt engineering
CS 780/880 Natural Language Processing Lecture 23

Samuel Carton, University of New Hampshire

Last lecture

Key idea: Download pretrained transformer model, then fine-tune to particular task

Pretrained transformer models

• BERT, RoBERTa, XLNet, RoBERTa, DistilBERT, T5, GPT-X

Encoder-decoder, encoder-only, decoder-only

How to choose?

Looking forward:

• Zero- and few-shot learning

• Prompt engineering

2

Lecture 17 prompt engineering

High-level introduction covering common problems with LLMs and common
solutions

• No code, no practical details

Various problems:

• Hallucination

• Reasoning errors

• Ungrounded outputs

• Problem for robotics

• Boring output

• Biased outputs

3

Various approaches:

• Retrieval-augmented generation

• Atlas

• Recitation-augmented generation

• Chain of thought prompting

• Faithful chain of thought prompting

• Do as I Can, not as I Say

• ReAct

Today: practical prompt engineering

How to actually construct prompts and use proprietary APIs

• Connecting to the OpenAI API

• Zero vs few-shot learning

• Exemplar choice

• Prompt design

4

Training a (very) large language model

Four distinct steps in training a model like GPT3.5/4, GEMINI, Claude, etc.

1. Pick architecture

2. Language modeling

3. Instruction tuning

4. Reinforcement learning from human feedback (RLHF)

5

Architecture

Contemporary models mostly decoder-only

• Pretty much just deep stacks of transformer self-attention
layers

Lots of parameters

• BERT, GPT-2: 110 million

• GPT-3: 175 billion

• GPT-4: 1 trillion (?)

6

Language modeling

1. Choose very large corpus of text, code, etc.

• Main companies very tight-lipped about exact pretraining dataset

• Often use some variant of the Common Crawl (https://commoncrawl.org/)

• Contents of most of the internet

2. Apply standard language modeling objective:

• I.e. teacher forcing

7

𝐿 𝑆 = −

𝑖

log𝑃 𝑠𝑖|𝑠0, … , 𝑠𝑖−1; 𝛳

https://commoncrawl.org/

Instruction tuning

Basic idea: Take trained language model and fine-tune it on relatively small dataset of
(instruction, response) pairs

• Bridges the gap between learning the language and learning how to take instructions

Examples:

• Natural Instructions: 193k instances derived from 61 existing NLP datasets
• Mishra, Swaroop, et al. "Cross-task generalization via natural language crowdsourcing instructions." arXiv preprint

arXiv:2104.08773 (2021).

• Flan 2021: 15M examples of 1836 tasks derived from 62 existing NLP datasets (including
SST02!)
• Longpre, Shayne, et al. "The flan collection: Designing data and methods for effective instruction

tuning." International Conference on Machine Learning. PMLR, 2023.

For more details: Zhang, Shengyu, et al. "Instruction tuning for large language

models: A survey." arXiv preprint arXiv:2308.10792 (2023).
8

Reinforcement learning from human feedback

Basic idea: Have model generate multiple possible responses to a prompt, have humans
label which one they prefer, use RL to encourage model to respond like that in the future.

• Uses reinforcement learning, an alternative learning paradigm to supervised learning

9
https://aws.amazon.com/what-is/reinforcement-learning-from-human-feedback/

Final result

Once we do all these steps, we end up with a model that:

• Is very good at sounding right

• Can do lots of tasks without any actual training

• Only “knows” things that it happened to memorize from language modeling objective

• E.g. “New Hampshire’s nickname is The _______ State”

• Best at stuff with lots of support in the training data

• Has been “encouraged” via RLHF to not be racist or teach people how to make bombs

• But this is a pretty soft guardrail

In summary: very (surprisingly) powerful, but also very flawed, unreliable, and breakable

10

Practical prompt engineering

There’s an increasing proliferation of LLMs available out there, for use with either
graphical interfaces or APIs

• OpenAI/GPT-X: https://platform.openai.com/

• Google/GEMINI: https://ai.google.dev/

• Anthropic/Claude: https://www.anthropic.com/api

Some free, some not. OpenAI API very much NOT free. But it’s the most popular and the
one I am familiar with, so that’s what I’ll teach.

Other APIs will be conceptually similar.

11

https://platform.openai.com/
https://ai.google.dev/
https://www.anthropic.com/api

SST-2

The last time we’ll see it! Say a tearful goodbye.

Doing two things different from usual:

• Truncating to 100 items

• Converting label to text

12

BERT baseline

Just as a basis for
comparison, we can look at
how a BERT-based
classifier does on our 100-
item validation set sample:

13

Installing OpenAI

14

Authenticating with OpenAI

15

Zero-shot prompt

The simplest possible prompt structure consists of: 1) instructions; 2) input document;
and 3) space for generated output

16

Calling the OpenAI API

17

https://platform.openai.com/docs/api-reference/making-requests

Running 0-shot learning on our data

18

Running 0-shot learning on our data

19

Calculating 0-shot performance

20

Few-shot prompt

21

Few-shot prompt

22

Few-shot prompt

An archetypal few-shot prompt looks something like the following:

1. Instructions

2. Exemplars

3. Final prompt (should have identical format to exemplars)

23

Running 1-shot learning on our data

24

Running 1-shot learning on our data

25

Calculating 1-shot performance

26

Calculating 5-shot performance

27

Evaluating LLMs

As we can see from these high accuracy scores, we’ve essentially exhausted SST-2 as a
useful benchmark for model accuracy.

• Only “errors” we’re seeing are truly borderline cases where humans would disagree

• All subjective tasks (e.g. sentiment, moderation) have some of these, meaning
accuracy ceiling is never truly 100%

So how do we come up with more meaningful evaluations of LLMs?

• More challenging tasks

• Main topic of next lecture

28

Advanced prompting methods

In lecture 17 I went over a few advanced prompting techniques that have been introduced
in the literature, including:

• Chain-of-thought prompting: improve logical reasoning

• Retrieval-augmented generation: reduce hallucination

• Recitation-augmented generation: reduce hallucination without doing actual
retrieval

And so on. Lots of things people are experimenting with these days. See the following for
more details:

Liu, Pengfei, et al. "Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language

processing." ACM Computing Surveys 55.9 (2023): 1-35.

29

Role-setting

Some people swear by “role-setting”, where before
you give it any instructions, you give the model an
“identity” to abide by

• This is how people have been “jailbreaking” the
models.

Example from my submitted paper:

30

Choice of exemplars

31

Sometimes the exemplars can actually sabotage the
model! So exemplar choice is a big deal

• Understudied area. No good survey I can find.

Concluding thoughts

Zero and few shot learning

Anatomy of a prompt

Exemplar choice

Role-setting

32

	Slide 1: Practical prompt engineering
	Slide 2: Last lecture
	Slide 3: Lecture 17 prompt engineering
	Slide 4: Today: practical prompt engineering
	Slide 5: Training a (very) large language model
	Slide 6: Architecture
	Slide 7: Language modeling
	Slide 8: Instruction tuning
	Slide 9: Reinforcement learning from human feedback
	Slide 10: Final result
	Slide 11: Practical prompt engineering
	Slide 12: SST-2
	Slide 13: BERT baseline
	Slide 14: Installing OpenAI
	Slide 15: Authenticating with OpenAI
	Slide 16: Zero-shot prompt
	Slide 17: Calling the OpenAI API
	Slide 18: Running 0-shot learning on our data
	Slide 19: Running 0-shot learning on our data
	Slide 20: Calculating 0-shot performance
	Slide 21: Few-shot prompt
	Slide 22: Few-shot prompt
	Slide 23: Few-shot prompt
	Slide 24: Running 1-shot learning on our data
	Slide 25: Running 1-shot learning on our data
	Slide 26: Calculating 1-shot performance
	Slide 27: Calculating 5-shot performance
	Slide 28: Evaluating LLMs
	Slide 29: Advanced prompting methods
	Slide 30: Role-setting
	Slide 31: Choice of exemplars
	Slide 32: Concluding thoughts

