Practical prompt engineering

CS 780/880 Natural Language Processing Lecture 23

Samuel Carton, University of New Hampshire

0

Last lecture

Key idea: Download pretrained transformer model, then fine-tune to particular task

Pretrained transformer models
« BERT, ROBERTa, XLNet, RoBERTa, DistilBERT, T5, GPT-X

Encoder-decoder, encoder-only, decoder-only
How to choose?
Looking forward:

« Zero- and few-shot learning
* Promptengineering

Lecture 17 prompt engineering

High-level introduction covering common problems with LLMs and common
solutions

* No code, no practical details

Various problems: Various approaches:
e Hallucination * Retrieval'augmented generation
* Reasoning errors * Atlas
« Ungrounded outputs * Recitation-augmented generation
* Problem for robotics * Chain of thought prompting
« Boring output * Faithful chain of thought prompting
* Biased outputs * DoaslCan,notasl| Say

e ReAct

Today: practical prompt engineering @

How to actually construct prompts and use proprietary APIs
e Connecting to the OpenAl API

» Zerovs few-shotlearning

* Exemplar choice

* Promptdesign

Training a (very) large language model @

Four distinct steps in training a model like GPT3.5/4, GEMINI, Claude, etc.
1. Pick architecture
Language modeling

2
3. Instruction tuning
4, Reinforcement learning from human feedback (RLHF)

Architecture

Contemporary models mostly decoder-only

Pretty much just deep stacks of transformer self-attention
layers

Lots of parameters

BERT, GPT-2: 110 million
GPT-3: 175 billion
GPT-4: 1 trillion (?)

Output
Probabilities

!

Add & Norm

Feed

Forward

I

Add & Norm

Multi-Head
Attention

2)

Positional D
Encoding

Input
/ Embedding

Inputs

Add & Norm

Masked
Multi-Head

Attention

&

L

 J
R—

Output

Embedding

T

Outputs
(shifted right)

@ Positional
Encoding

Language modeling

1. Choose very large corpus of text, code, etc.
* Main companies very tight-lipped about exact pretraining dataset
* Often use some variant of the Common Crawl (https://commoncrawl.org/)
* Contents of most of the internet

2. Apply standard language modeling objective: L(S) = ZIOgP(stO,.. Si_1;0)
* l.e.teacherforcing

https://commoncrawl.org/

0

Instruction tuning

Basic idea: Take trained language model and fine-tune it on relatively small dataset of
(instruction, response) pairs

* Bridges the gap between learning the language and learning how to take instructions

Examples:
* Natural Instructions: 193k instances derived from 61 existing NLP datasets

Mishra, Swaroop, et al. "Cross-task generalization via natural language crowdsourcing instructions." arXiv preprint
arXiv:2104.08773 (2021).

* Flan 2021: 15M examples of 1836 tasks derived from 62 existing NLP datasets (including
SST02!)

Longpre, Shayne, et al. "The flan collection: Designing data and methods for effective instruction
tuning." International Conference on Machine Learning. PMLR, 2023.

For more details: Zhang, Shengyu, et al. "Instruction tuning for large language
models: A survey." arXiv preprint arXiv:2308.10792 (2023).

Reinforcement learning from human feedback

Basic idea: Have model generate multiple possible responses to a prompt, have humans
label which one they prefer, use RL to encourage model to respond like that in the future.

* Usesreinforcement learning, an alternative learning paradigm to supervised learning

Step 1 Supervised Fine-Tuning Step 2 Training a Reward Model Step 3 Optimize Policy
~—
I~ é
® b EE; o - s 1)
> //
b, B (g ST - OB
Prompt o @@ ' Policy
Collect human SFT Answer2 |
demonstration data Collect human preference data @
I|'II Answer
|II |
| A\ J
y B ' et - Yy
. eward +—
é Supervised é é Supervised é
Fine-tune tﬂl Fine-tune tm -
<0 xD D aD RM
Base LLM SFT Base LLM RM ©
PPO

https://aws.amazon.com/what-is/reinforcement-learning-from-human-feedback/

Final result

0

Once we do all these steps, we end up with a model that:
* Isvery good at sounding right
* Cando lots of tasks without any actual training

* Only “knows” things that it happened to memorize from language modeling objective
* E.g. “New Hampshire’s nickname is The State”

» Best at stuff with lots of supportin the training data

* Has been “encouraged” via RLHF to not be racist or teach people how to make bombs
* Butthisis a pretty soft guardrail

In summary: very (surprisingly) powerful, but also very flawed, unreliable, and breakable

10

Practical prompt engineering

0

There’s an increasing proliferation of LLMs available out there, for use with either
graphical interfaces or APIs

* OpenAl/GPT-X: https://platform.openai.com/
* Google/GEMINI: https://ai.google.dev/
* Anthropic/Claude: https://www.anthropic.com/api

Some free, some not. OpenAl APl very much NOT free. But it’s the most popular and the
one | am familiar with, so that’s what I’ll teach.

Other APIs will be conceptually similar.

11

https://platform.openai.com/
https://ai.google.dev/
https://www.anthropic.com/api

SST-2 (Y

The last time we’ll see it! Say a tearful goodbye. * display(dev_df)
index sentence label
DOing two th|ng5 different from usual: 0 797 it 's not original , and , robbed of the eleme... negative
* Tru ncating to 100 items 1 198 this is a winning ensemble comedy that shows c... positive
e Co nverting label to text 2 769 an infectious cultural fable with a tasty bala... positive
3 472 you will emerge with a clearer view of how the... positive
4 572 the film 's tone and pacing are off almost fro... negative
95 355 there is no pleasure in watching a child suffe... negative
96 233 i 'd have to say the star and director are the... negative
97 849 trademark american triteness and simplicity ar... positive
98 438 the movie has an infectious exuberance that wi... positive
99 92 you wo n't like roger , but you will quickly r... negative

100 rows x 3 columns

BERT baseline

¢

Just as a basis for
comparison, we can look at
how a BERT-based
classifier does on our 100-
item validation set sample:

bert_trainer.fit(model=bert_model,

train_dataloaders=train_dataloader,
3 val_dataloaders=dev_dataloader)

| Name |

:pytorch_lightning.
:pytorch_lightning.
:pytorch_lightning.
:pytorch_lightning.
:pytorch_lightning.
:pytorch_lightning.

utilities.
utilities.

utilities
utilities

Type

rank_zero:GPU
rank_zero:TPU

.rank_zero:IPU
.rank_zero:HPU
accelerators.cuda:LOCAL_|
callbacks.model_summary:

available:
available:
available:
available:

RANK:

| Params

| bert |
| output_layer |
| train_accuracy |
| val_accuracy |

BertModel
Linear

MulticlassAccuracy | @
MulticlassAccuracy | @

| 1.5 K

Trainable params

2] Non-trainable params

Total params

437.935

Total estimated model params size (MB)

Validation accuracy: tensor(©.618e, device='cuda:9')

Validation
Validation
Validation
Validation
Validation

accuracy:
accuracy:
accuracy:
accuracy:
accuracy:

INFO:pytorch_lightning.

tensor(©.9400,
tensor(©.9508,
tensor(©.9500,
tensor(©.9508,
tensor(

©.9500

device='cuda:@"')
device='cuda:9")
device='cuda:@"')
device='cuda:9")
device='cuda:@"')

True (cuda), used: True

False, using:
False, using:
False, using:
@ - CUDA_VISIBLE_DEVICES:

@ TPU cores
@ IPUs
@ HPUs

[e]

utili®TES. rank_zero: Trainer.fit® stopped: ‘max_epochs=1" reached.
Training accuracy: tensor(8.9179, device='cuda:0')

Installing OpenAl (

The OpenAI API keeps changing, so I'm teaching a slightly older version

Ipip install openai==1.3.7

vi o Bow NP

You can find up-to-date documentation at https://platform.openai.com/docs/introduction

Collecting openai==1.3.7
Downloading openai-1.3.7-py3-none-any.whl (221 kB)
221.4/221.4 kB 4.9 MB/s eta ©:00:00
Requirement already satisfied: anyio<4,>=3.5.0 in /usr/local/lib/python3.1@/dist-packages (from openai==1.3.7) (3.7.1)
Requirement already satisfied: distro<2,>=1.7.@ in /usr/lib/python3/dist-packages (from openai==1.3.7) (1.7.9)
Collecting httpx<1,>=0.23.0 (from openai==1.3.7)
Downloading httpx-©.27.0-py3-none-any.whl (75 kB)
75.6/75.6 kB 8.8 MB/s eta ©:00:00
Requirement already satisfied: pydantic<3,>=1.9.0 in /usr/local/lib/python3.18/dist-packages (from openai==1.3.7) (2.7.8)
Requirement already satisfied: sniffio in /usr/local/lib/python3.1@/dist-packages (from openai==1.3.7) (1.3.1)
Requirement already satisfied: tqdm>4 in /usr/local/lib/python3.18/dist-packages (from openai==1.3.7) (4.66.2)
Requirement already satisfied: typing-extensions<5,>=4.5 in /usr/local/lib/python3.16/dist-packages (from openai==1.3.7) (4.11.8)
Requirement already satisfied: idna>=2.8 in /usr/local/lib/python3.1@/dist-packages (from anyio<4,>=3.5.9->openai==1.3.7) (3.7)
Requirement already satisfied: exceptiongroup in /usr/local/lib/python3.18/dist-packages (from anyio<4,>=3.5.8->openai==1.3.7) (1.2.1)
Requirement already satisfied: certifi in /usr/local/lib/python3.1@/dist-packages (from httpx<l,>=0.23.8->o0penai==1.3.7) (2024.2.2)
Collecting httpcore==1.* (from httpx<l,>=0.23.8->0penai==1.3.7)
Downloading httpcore-1.0.5-py3-none-any.whl (77 kB)
77.9/77.9 kB 9.3 MB/s eta ©:00:00
Collecting h11<®.15,>=0.13 (from httpcore==1.*->httpx<1l,>=0.23.0->0openai==1.3.7)
Downloading hl11-©.14.©-py3-none-any.whl (58 kB)
58.3/58.3 kB 6.6 MB/s eta ©:00:08
Requirement already satisfied: annotated-types>=0.4.@ in /usr/local/lib/python3.18/dist-packages (from pydantic<3,>=1.9.8->openai==1.3.7) (0.6.0)
Requirement already satisfied: pydantic-core==2.18.1 in /usr/local/lib/python3.10/dist-packages (from pydantic<3,»>=1.9.@->o0openai==1.3.7) (2.18.1)
Installing collected packages: hll, httpcore, httpx, openai
Successfully installed hl1-9.14.@ httpcore-1.0.5 httpx-©.27.0 openai-1.3.7

14

Authenticating with OpenAl

I'm going to have to delete my credentials before I make this notebook public
because it costs me a little money every time I want to use them.

Sign up for your own OpenAI account here: https://platform.openai.com/signup

import os

import openai
organization = None
api_key = None

client = OpenAI(

defaults to os.environ.get("OPENAI_API_KEY")
api_key=api_key,

15

Zero-shot prompt (

The simplest possible prompt structure consists of: 1) instructions; 2) input document;
and 3) space for generated output

1 # We begin with a function that will take in an SST-2 instance and create a prompt from it
2

3 def create_zero_shot_prompt(text:str):

4 prompt = f'"'"'

5 Label the following short movie review as either positive or negative.
6

7 Review: {text}

8

9 Label:

10 " ostrip()

11

12 return prompt

13

14 first_dev_prompt = create_zero_shot_prompt(dev_df.iloc[@]['sentence'])
15 print(first_dev_prompt)

Label the following short movie review as either positive or negative.

Review: it 's not original , and , robbed of the element of surprise , it does n't have any huge laughs in its story of irresponsible cops who love to play pranks .

Label:

16

Then we make a function to send the prompt to the OpenAI API and get the response back

1
2 from openai import OpenAl
4 def prompt_gpt_4(prompt:str):
5 chat_completion = client.chat.completions.create(
6 messages=[
{
8 "role": "user",
9 "content": prompt,
10 }
11 I
12 model="gpt-4",
3)
14 return chat_completion.choices[@].message.content
1 first_dev_response_1 = prompt_gpt_4(first_dev_prompt)
2 print(first_dev_response_1)
Negative
1 first_dev_response_2 = prompt_gpt_4(first_dev_prompt)
2 print(first_dev_response_2)
Negative
1 first_dev_response_3 = prompt_gpt_4(first_dev_prompt)
2 print(first_dev_response_3)

Negative

-

1
2
3
4
5
6
7
8
9

https://platform.openai.com/docs/api-reference/making-requests

Running 0-shot learningonourdata CQO

1 # Then we simply iterate through the items in our (shortened) dev set, and run 'Positive’,
2 # the API on each one "Negative',
3 'Positive’,
4 zero_shot_responses = [] 'Positive’,
5 '"Positive’,
6 for index, row in dev_df.iterrows(): #one of several ways to iterate through rows of a DF 'Neg?t%ve',
7 if index % (dev_df.shape[©]//18)==1: print(index,'...") 'Pos%t%ve',
8 prompt = create_zero_shot_prompt(row['sentence']) :POSIt%VE:’
9 response = prompt_gpt_4(prompt) 'Neg?t%ve',
1e zero_shot_responses.append(response) Pos?tfve ?
'Positive’,

1 "Negative',
1 'Negative',
21 ... "Positive’,
31 . '"Positive’,
a1 ... "Positive’,
51 ... 'Negative',
61 ... "Negative',
71 ... 'Negative',
81 ... "Positive’,
91 ... "Negative',
"Negative',

'"Positive’,

1 zero_shot_responses "Positive’,

"Neutral']
['Negative', ———
"Positive’,
"Positive’,
'Positive’, 18

Running 0-shot learningonourdata CQO

2w N

95

96

97

98

99

dev_df['zero_shot_prediction'] = zero_shot_responses

GPT-4 capitalized all its responses so we need to lower-case them

dev_df['zero_shot_prediction'] = dev_df['zero_shot_prediction'].apply(lambda s:s.lower())
display(dev_df)

index

797

198

769

472

572

355

233

849

438

92

sentence

it 's not original , and , robbed of the eleme...

this is a winning ensemble comedy that shows c...
an infectious cultural fable with a tasty bala...

you will emerge with a clearer view of how the...

the film 's tone and pacing are off almost fro...

there is no pleasure in watching a child suffe...

i 'd have to say the star and director are the...
trademark american triteness and simplicity ar...
the movie has an infectious exuberance that wi...

you wo n't like roger , but you will quickly r...

100 rows x 4 columns

label zero_shot_prediction

negative
positive
positive
positive

negative

negative
negative
positive
positive

negative

negative
positive
positive
positive

negative

negative
negative
positive
positive

neutral

19

Calculating 0-shot performance

80

And now we can use scikit-learn functions to assess the accuracy

from sklearn.metrics import accuracy_score
print(accuracy_score(dev_df['label'], dev_df['zero_shot_prediction']))

And it's good!

We can take a look at the few (4) cases where the model disagreed with the true label

pd.options.display.max_colwidth=0
dev_df[dev_df['label’'] != dev_df['zero_shot_prediction']]

And they are all pretty borderline.

1
2
3
4
5
6
9.96
—
1
2
3
4
5
index
20 260
51 102
91 143
99 92

sentence

/ but daphne , you 're too buff / fred thinks he 's tough / and velma - wow , you 've lost weight !
does paint some memorable images ... , but makhmalbaf keeps her distance from the characters
a solid film ... but more conscientious than it is truly stirring .

you wo n't like roger , but you will quickly recognize him .

label
negative
positive
positive

negative

zero_shot_prediction
positive

negative

negative

neutral

20

Few-shot prompt

1 # What we mostly need to do few-shot learning is a new function that will take in
2 # an SST item and create a prompt with X exemplars in it

3

4 # First we make a function that will create the text of an exemplar

5 def create_exemplar_text(text:str, label:str):

6 exemplar = f'""'

7 Review: {text}

8

9 Label: {label}
1e "''.strip()
11 return exemplar
12
13
14 first_exemplar = create_exemplar_text(train_df.iloc[@]['sentence'], train_df.iloc[@]['label'])
15 print(first_exemplar)

Review: hide new secretions from the parental units

Label: negative

21

Few-shot prompt

¢

Then a function that will sample exemplars from a dataframe and add them into an overall prompt
def create_few_shot_prompt(text:str,
num_exemplars:int,
random_seed:int,
exemplar_df:pd.DataFrame):
Construct the prompt piece by piece
prompt = 'Label the following short movie review as either positive or negative.\n'

Add text of each exemplar
exemplar_rows = exemplar_df.sample(h=num_exemplars, random_state=random_seed)
for index, row in exemplar_rows.iterrows():

exemplar_text = create_exemplar_text(row['sentence'], row['label'])

prompt = prompt + '\n'+exemplar_text+'\n'

Add final prompt
prompt =prompt + f'"'
Review: {text}

Label:

return prompt

first_dev_few_prompt = create_few_shot_prompt(dev_df.iloc[@]['sentence'],
3,
9,
train_df)
print(first_dev_few_prompt)

22

Few-shot prompt (

An archetypal few-shot prompt looks something like the following:
1. Instructions

2. Exemplars

3. Final prompt (should have identical format to exemplars)

Label the following short movie review as either positive or negative.

Review: very pleasing at its best moments

Label: positive

Review: , american chai is enough to make you put away the guitar , sell the amp , and apply to medical school .
Label: negative

Review: too much like an infomercial for ram dass 's latest book aimed at the boomer

Label: negative

Review: it 's not original , and , robbed of the element of surprise , it does n't have any huge laughs in its story of irresponsible cops who love to play pranks |

Label:

23

Running 1-shot learning on our data

CO

1 one_shot_responses = []
2 for index, row in dev_df.iterrows():
3 if index % (dev_df.shape[@]//18)==1: print(index,'...")
4 prompt = create_few_shot_prompt(row['sentence'],
5 num_exemplars=1,
6 random_seed = index+5646,
7 exemplar_df=train_df)
8 response = prompt_gpt_4(prompt)
9 one_shot_responses.append(response)
1.
11
21
31
41
51
61
71
81
91

1 one_shot_responses

['negative',
'positive’,
'positive’,
'hegative’,
'negative’,

'negative’,
'negative’,
'positive’,
'negative’,
'positive’,
'positive’,
'positive’,
'negative’,
'positive’,
'positive’,
'negative’,
'positive’,
'positive’,
'negative’,
'negative’,
'positive’,
'positive’,
'positive’,
'positive’,
'negative’,
'negative’,
'positive’,
'negative’,
'negative’,
'positive’,
'positive’,
'positive’]

24

Running 1-shot learning on our data

CO

E N VYR S I

95
96
97
98

99

pd.options.display.max_colwidth = 58
dev_df['one_shot_prediction'] = one_shot_responses
Note that because we demonstrated the output format, we don't need to lowercase the predicted labels
display(dev_df)

index

797

198

769

472

572

355

233

849

438

92

sentence

it 's not original , and , robbed of the eleme...

this is a winning ensemble comedy that shows c...
an infectious cultural fable with a tasty bala...

you will emerge with a clearer view of how the...

the film 's tone and pacing are off almost fro...

there is no pleasure in watching a child suffe...

i 'd have to say the star and director are the...
trademark american triteness and simplicity ar...
the movie has an infectious exuberance that wi...

you wo n't like roger , but you will quickly r...

100 rows x 5 columns

label
negative
positive
positive
positive

negative

negative
negative
positive
positive

negative

zero_shot_prediction
negative

positive

positive

positive

negative

negative
negative
positive
positive

neutral

one_shot_prediction
negative

positive

positive

negative

negative

negative
negative
positive
positive

positive

25

Calculating 1-shot performance

B wn R

.96

20

51

99

And again we can calculate the accuracy

print(accuracy_score(dev_df['label'], dev_df['one_shot_prediction']))

And it's equally good as zero-shot

And it gets mostly the same ones wrong as zero-shot, except for the first row
pd.options.display.max_colwidth=0
display(dev_df[dev_df['label'] != dev_df['one_shot_prediction’']])

index

472

260

102

92

sentence

you will emerge with a clearer view of how the gears of justice grind on and the death report comes to
share airtime alongside the farm report .

/ but daphne , you 're too buff / fred thinks he 's tough / and velma - wow , you 've lost weight !
does paint some memorable images ... , but makhmalbaf keeps her distance from the characters

you wo n't like roger , but you will quickly recognize him .

label

positive

negative
positive

negative

zero_shot_prediction

positive

positive
negative

neutral

one_shot_prediction

negative

positive
negative

positive

26

Calculating 5-shot performance

1 # Marginally better

2 print(accuracy_score(dev_df['label'], dev_df['five_shot_prediction']))

8.97

1 pd.options.display.max_colwidth=0
2 display(dev_df[dev_df['label’'] != dev_df['five_shot_prediction']])

index sentence

/ but daphne , you 're too buff / fred thinks he 's tough / and velma - wow ,

20 260 you 've lost weight !
does paint some memorable images ... , but makhmalbaf keeps her

51 102 .
distance from the characters
99 92 you wo n't like roger , but you will quickly recognize him .

label

negative

positive

negative

zero_shot_prediction

positive

negative

neutral

one_shot_prediction five_shot_prediction

positive positive
negative negative
positive positive

27

0

Evaluating LLMs

As we can see from these high accuracy scores, we’ve essentially exhausted SST-2 as a
useful benchmark for model accuracy.

* Only “errors” we’re seeing are truly borderline cases where humans would disagree

* All subjective tasks (e.g. sentiment, moderation) have some of these, meaning
accuracy ceiling is never truly 100%

So how do we come up with more meaningful evaluations of LLMs?

* More challenging tasks
* Main topic of next lecture

28

0

Advanced prompting methods

In lecture 17 | went over a few advanced prompting techniques that have been introduced
in the literature, including:

* Chain-of-thought prompting: improve logical reasoning
* Retrieval-augmented generation: reduce hallucination

* Recitation-augmented generation: reduce hallucination without doing actual
retrieval

And so on. Lots of things people are experimenting with these days. See the following for
more details:

Liu, Pengfei, et al. "Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language
processing.” ACM Computing Surveys 55.9 (2023): 1-35.

29

Role-setting

Some people swear by “role-setting”, where before
you give it any instructions, you give the model an
“identity” to abide by

This is how people have been “jailbreaking” the

models.

Example from my submitted paper:

Role Setting:

I am a helpful assistant capable of extracting
information from text. I will not generate any
new tokens... return the information in format
of the schema.

Exemplar:

{{Prompt instructions}}
{{Exemplar XML}}
{{Exemplar output JSON}}

Prompt:

Extract all information relating to every High
Entropy Alloys (HEA) from the following text:
{{Paper XML}} using the following schema:

{{JSON schema}}. Return a list of schemas in
JSON format for every unique compound.

Additional context: HEA composition sometimes
have wvariable ratio... not available then
return 'No information'.

Restriction: Do not extract any tokens if a
HEA... not available then return 'No
information'. Do not vioclate the schema.

A) Rationalized predlctlon prompt with exemplars

Based on the document between the
the claim between the '_lc.l]"': tags as SUPPORT,

or ‘J’ INFO, with respect to the document.
ond 1n json format, with a
fication and an 'explanation'

" Tabal®

parts of the document that support the label.
{{NOINFO exemplar}}

<doc> BACKGROQUND Adoption of new and underutilized

vaccine, </claim>

{"label" :"CONTRADICT" explanatior

laim> 32% of liver transplantation programs reguired

claim-~

{"label":"SUPEPORT", "explanation":|["Policies requiring

i . _

of previously stable patients”]!

<doe> i
k i ... allows a
trial commitment to multicellularity that external

signals could extend. </doc>
<claim> n o ion n var reciabl r
netically identical 1lls. </claim>

{"label":"NOINFO", "explanation":[]} x

Choice of exemplars

Sometimes the exemplars can actually sabotage the
model! So exemplar choice is a big deal

* Understudied area. No good survey | can find.

B) Evidence-only prompt (no rationalization)
{{Prompt instructions}}

{"label": "CONTRADICT"} /
C) No-exemplar prompt
{{Prompt instructions}}

{{Document and claim}}

{"label": "CONTRADICT", "explanation": ["Genetically
identical cells sharing an environment can display /

g 31
markedly different phenotypes."]}

Concluding thoughts

Zero and few shot learning
Anatomy of a prompt
Exemplar choice

Role-setting

32

	Slide 1: Practical prompt engineering
	Slide 2: Last lecture
	Slide 3: Lecture 17 prompt engineering
	Slide 4: Today: practical prompt engineering
	Slide 5: Training a (very) large language model
	Slide 6: Architecture
	Slide 7: Language modeling
	Slide 8: Instruction tuning
	Slide 9: Reinforcement learning from human feedback
	Slide 10: Final result
	Slide 11: Practical prompt engineering
	Slide 12: SST-2
	Slide 13: BERT baseline
	Slide 14: Installing OpenAI
	Slide 15: Authenticating with OpenAI
	Slide 16: Zero-shot prompt
	Slide 17: Calling the OpenAI API
	Slide 18: Running 0-shot learning on our data
	Slide 19: Running 0-shot learning on our data
	Slide 20: Calculating 0-shot performance
	Slide 21: Few-shot prompt
	Slide 22: Few-shot prompt
	Slide 23: Few-shot prompt
	Slide 24: Running 1-shot learning on our data
	Slide 25: Running 1-shot learning on our data
	Slide 26: Calculating 1-shot performance
	Slide 27: Calculating 5-shot performance
	Slide 28: Evaluating LLMs
	Slide 29: Advanced prompting methods
	Slide 30: Role-setting
	Slide 31: Choice of exemplars
	Slide 32: Concluding thoughts

