
BERT and Friends
CS 780/880 Natural Language Processing Lecture 20

Samuel Carton, University of New Hampshire

Last lecture

Transformer architecture

• Many layers

• Self-attention

• Feed-forward

• Residuals

• Encoder-decoder

• Encoder nonrecurrent

• Decoder recurrent

• Positional encodings

Pretrained transformer (BERT) is a good starting
point for fine-tuning!

2

Last lecture

Transformer architecture

• Many layers

• Self-attention

• Feed-forward

• Residuals

• Encoder-decoder

• Encoder nonrecurrent

• Decoder recurrent

• Positional encodings

Pretrained transformer is a good starting point for
fine-tuning!

3

Pretrained transformers

Every current well-known large language model is a transformer that has been extensively
pretrained on a large corpus of text, with some language modeling objective

• BERT, RoBERTa, T5, GPT-X, etc.

The difference between different models is mostly just:

• Training objective

• Use of encoder only, decoder only, or both

• Model size

• Training set size & composition

• Dataset preprocessing

• Minor architecture differences

…which seems like a lot, but it’s still pretty remarkable that the underlying model is
mostly the same (Transformer) 4

Well-known models

There’s a few key models that are in wide use:

• BERT

• RoBERTa

• XLNet

• DistilBERT

• T5

• GPT family

Most can be downloaded at
https://huggingface.co/models

5

https://huggingface.co/models

BERT

Bidirectional Encoder Representations from Transformers

Encoder-only model

Bert-base:

• 12 layers, 12 heads per layer

• 110 million parameters

Two pretraining objectives:

• Masked language modeling (Mask-LM)

• Next sentence prediction (NSP)

6

BERT encoder

The BERT encoder:

1. Takes in wordpieces

2. With [CLS] at the beginning and [SEP] between sentences

3. Adds positional and segment ID (0 or 1) embeddings

4. Outputs a hidden state vector for each wordpiece (including [CLS] and [SEP]s)

7

BERT encoder

The BERT encoder:

1. Takes in wordpieces

2. With [CLS] at the beginning and [SEP] between sentences

3. Adds positional and segment ID (0 or 1) embeddings

4. Outputs a hidden state vector for each wordpiece (including [CLS] and [SEP]s)

8

BERT encoder

Output H[CLS] Hmy Hdog His Hcute H[SEP] Hhe Hlikes Hplay Hing H[SEP]

BERT pretraining

Mask-LM: Randomly mask 15% of tokens and try to predict them from Htoken

NSP: Randomly sample correct/incorrect sentence pairs, try to predict which is correct
from H[CLS]

A term used for this overall approach is denoising autoencoding

• “Denoising” because it tries to correct missing tokens

• “Autoencoding” because it tries to encode unlabeled text to a vector representation

Pretraining corpus:

• BooksCorpus (800M words)

• English Wikipedia (2,500M words)

BERTLARGE is also available (24 layers, 16 heads per layer, 340M params)
9

Masked language modeling

10https://jalammar.github.io/illustrated-bert/

Next-sentence prediction

11

https://jalammar.github.io/illustrated-bert/

Deep contextualized representations

A key thing about these models is that they produce deep contextualized
representations of their input

• A single vector that represents the whole sequence (H[CLS]) or an individual token
(Htoken)

• The vector reflects the context surrounding that token.

• So Hjerk will be different for “You are a jerk.” versus “I like jerk chicken”

• Compare and contrast to word vectors

With large scale pretraining, we have models which can produce useful representations of
input, which we can then fine-tune to do specific things

• Kind of like teaching someone English before trying to teach them to grade papers

12

RoBERTa

Essentially a refinement/exploration of BERT

• Same architecture & training data

• Also encoder-only

• Ditches NSP

• Does “dynamic” mask-LM

• Improved performance on NLP
benchmarks

Comparable size to BERTLARGE

• 24 layers, 16 heads per layer, 355M params total

Probably a better default choice than BERT, if you have the GPU memory

13

XLNet

Another competitor of BERT that occasionally
shows up in the literature

Also uses only the encoder

Pretrains using a variant of autoregressive language modeling called permutation
language modeling

Comparison with BERT

• Same size

• Additional training data:

• ClueWeb

• Common Crawl

• Broadly improved performance 14

Autoregressive language modeling

Basic idea: train the model to be most likely to reproduce the training data

We’ve learned this before (a couple times), but this is alternative terminology.

Based on a forward factorization of the text where each xt is dependent on {x0…xt-1}, so
we can factorize the overall likeliness of x as a sum of log-probabilities of each individual
xt:

Several options for exactly how to do this:

• Teacher forcing: each x<t is drawn from the true data

• Naïve autoregression: each x<t is the one generated by the model
15

Autoregressive language modeling

16

Autoregressive decoding

17

XLNET: Permutation language modeling

18

Rather than only optimizing for token
likelihood in forward factorization, XLNet
optimizes for every possible permutation
of the text

So not just P(X3 | X1, X2), but also P(X3),
P(X3|X4), P(X3|X1, X4, X2), etc..

But doesn’t use decoder!

• Instead manipulates model attention
and positional encodings to erase and
reorder tokens from input

DistilBERT

A version of BERT that has been reduced in size from BERT by a process called knowledge
distillation

Knowledge distillation:

• Big (trained) teacher model and small student
model

• Train student model to emulate teacher model

• Different from regular training because teacher model produces nonzero probabilities
over other possible classes, which is richer training data than 1’s and 0’s

• Kind of like explaining that a shape in a CT scan is a tumor, but also looks like a
cyst, rather than “it’s just a tumor and not a cyst”

97% of the performance of BERT, but 40% smaller and 60% faster

• 6 layers, 12 heads per layer, 66M parameters
19

T5

Important model. Really the first big
improvement from the BERT variants.

Uses the full encoder-decoder apparatus of the Transformer architecture

Does a combination of unsupervised language modeling and supervised text-to-text
modeling

Fine-tuned T5 is still pretty close to SoTA for many NLP tasks

20

T5 pretraining—unsupervised

Creates a big, cleaned-up unsupervised training corpus:

“Colossal Clean Crawled Corpus”: cleaned-up version of Common Crawl

Uses variant of masked-LM objective from BERT, mapping corrupted text to true text

• Can mask out contiguous sequences of tokens at once

• Uses teacher-forcing to train decoder

21

T5 pretraining—supervised

Also converts a diverse set of supervised learning datasets into text-to-text tasks, and
trains on them

• GLUE and SuperGLUE

22

T5

Most common model is T5-11b (11 billion parameters), but smaller variants also exist

Fine-tuned T5-11b is still pretty competitive in NLP benchmarks

23https://super.gluebenchmark.com/leaderboard

GPT-1

Precursor model to GPT-2, GPT-3, and GPT-4

Decoder-only. Does not encode entire input sequence—rather, just encodes input
sequence token-by-token

Trained using standard autoregressive language modeling objective

• Uses teacher forcing (I believe)

Trained on BooksCorpus dataset

12 layers, 12 heads per layer, 120M parameters

24

GPT-1 fine-tuning

25

GPT-2,3,4

All larger and more capable versions of GPT-1

Same model with slight modifications

Same or larger datasets

GPT-2: 1.5B parameters

GPT-3: 175B parameters

GPT-4: ???????????

26

How to choose?

For general-purpose NLP fine-tuning, use the biggest model you can train:

• T5-11b → RoBERTa-Large → BERT-base → DistilBERT

For text generation, GPT-2 or GPT-Neo

For specific domains, try to find domain-specific versions of models

• E.g. MatSciBERT for materials-science specific NLP tasks

• Hugging Face has a nice search interface

Important to try multiple models

27

Classification with BERT

I showed you last class how to build a classifier around a BERT model.

Brief review:

• BERT tokenizer will do tokenization, batching and padding for you. Noice.

• The output layer should be built on top of the BERT’s output for the [CLS] token, which
gets added to the front of the sequence by the tokenizer

28

BERT tokenizer

29

BERT tokenizer

30

BERT tokenizer

31

SST 2 dataset

32

SST-2 Dataset

33

SST-2 DataLoader

34

BERT classifier model

35

BERT classifier model

36

BERT classifier model

37

BERT classifier training

38

Other stuff we can do with BERT

Virtually the only thing BERT can’t do well is generate text autoregressively (decode it).

That means there’s a lot it can do, including:

• Sequence tagging

• Infilling missing tokens

39

Transformer tokenizers

Sometimes we want to run a Transformer tokenizer over a list of tokens rather than a text

40

Transformer tokenizer

41

CoNLL 2003

Classic named-entity recognition (NER) dataset

Consists of consists of a series of news articles, with each word in each article tagged for
part-of-speech, constituency, and named-entity membership

We’re only using the named-entity tags in this example

42

Getting CoNLL

43

Getting CoNLL

44

Preprocessing CoNLL

45

Preprocessing CoNLL2003

46

CoNLL Dataset

The PyTorch Dataset for CoNLL is very simple and standard. Just return a set of token and
a set of NER labels

47

CoNLL DataLoader

The DataLoader is more
complicated because we have to
align the (double) tokenized
tokens with the token tags.

We’ll use that extra tokenizer
information I mentioned earlier
to do that.

48

CoNLL sequence tagging model

49

CoNLL sequence tagging model

50

CoNLL sequence tagging model

51

CoNLL sequence tagging model

52

CoNLL model training

53

…

Masked language modeling

Even though BERT isn’t trained autoregressively, it is trained to in-fill missing words based
on the surrounding context.

…and we can try that aspect of the model out!

54

BERT masked language modeling

55

BERT masked language modeling

56

BERT masked language modeling

57

BERT masked language modeling

58

BERT masked language modeling

59

BERT masked language modeling

60

BERT masked language modeling

61

BERT masked language modeling

62

Concluding thoughts

Pretrained transformer models

• BERT, RoBERTa, XLNet, RoBERTa, DistilBERT, T5, GPT-X

Encoder-decoder, encoder-only, decoder-only

How to choose?

Looking forward:

• Zero- and few-shot learning

• Prompt engineering

63

	Slide 1: BERT and Friends
	Slide 2: Last lecture
	Slide 3: Last lecture
	Slide 4: Pretrained transformers
	Slide 5: Well-known models
	Slide 6: BERT
	Slide 7: BERT encoder
	Slide 8: BERT encoder
	Slide 9: BERT pretraining
	Slide 10: Masked language modeling
	Slide 11: Next-sentence prediction
	Slide 12: Deep contextualized representations
	Slide 13: RoBERTa
	Slide 14: XLNet
	Slide 15: Autoregressive language modeling
	Slide 16: Autoregressive language modeling
	Slide 17: Autoregressive decoding
	Slide 18: XLNET: Permutation language modeling
	Slide 19: DistilBERT
	Slide 20: T5
	Slide 21: T5 pretraining—unsupervised
	Slide 22: T5 pretraining—supervised
	Slide 23: T5
	Slide 24: GPT-1
	Slide 25: GPT-1 fine-tuning
	Slide 26: GPT-2,3,4
	Slide 27: How to choose?
	Slide 28: Classification with BERT
	Slide 29: BERT tokenizer
	Slide 30: BERT tokenizer
	Slide 31: BERT tokenizer
	Slide 32: SST 2 dataset
	Slide 33: SST-2 Dataset
	Slide 34: SST-2 DataLoader
	Slide 35: BERT classifier model
	Slide 36: BERT classifier model
	Slide 37: BERT classifier model
	Slide 38: BERT classifier training
	Slide 39: Other stuff we can do with BERT
	Slide 40: Transformer tokenizers
	Slide 41: Transformer tokenizer
	Slide 42: CoNLL 2003
	Slide 43: Getting CoNLL
	Slide 44: Getting CoNLL
	Slide 45: Preprocessing CoNLL
	Slide 46: Preprocessing CoNLL2003
	Slide 47: CoNLL Dataset
	Slide 48: CoNLL DataLoader
	Slide 49: CoNLL sequence tagging model
	Slide 50: CoNLL sequence tagging model
	Slide 51: CoNLL sequence tagging model
	Slide 52: CoNLL sequence tagging model
	Slide 53: CoNLL model training
	Slide 54: Masked language modeling
	Slide 55: BERT masked language modeling
	Slide 56: BERT masked language modeling
	Slide 57: BERT masked language modeling
	Slide 58: BERT masked language modeling
	Slide 59: BERT masked language modeling
	Slide 60: BERT masked language modeling
	Slide 61: BERT masked language modeling
	Slide 62: BERT masked language modeling
	Slide 63: Concluding thoughts

