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Last lecture

Transformer architecture

• Many layers

• Self-attention

• Feed-forward

• Residuals

• Encoder-decoder

• Encoder nonrecurrent

• Decoder recurrent

• Positional encodings

Pretrained transformer (BERT) is a good starting 
point for fine-tuning!
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Pretrained transformers

Every current well-known large language model is a transformer that has been extensively 
pretrained on a large corpus of text, with some language modeling objective

• BERT, RoBERTa, T5, GPT-X, etc.

The difference between different models is mostly just:

• Training objective

• Use of encoder only, decoder only, or both

• Model size

• Training set size & composition

• Dataset preprocessing

• Minor architecture differences

…which seems like a lot, but it’s still pretty remarkable that the underlying model is 
mostly the same (Transformer) 4



Well-known models

There’s a few key models that are in wide use:

• BERT

• RoBERTa

• XLNet

• DistilBERT

• T5

• GPT family

Most can be downloaded at 
https://huggingface.co/models 
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BERT

Bidirectional Encoder Representations from Transformers

Encoder-only model

Bert-base:

• 12 layers, 12 heads per layer

• 110 million parameters

Two pretraining objectives:

• Masked language modeling (Mask-LM)

• Next sentence prediction (NSP)
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BERT encoder

The BERT encoder:

1. Takes in wordpieces

2. With [CLS] at the beginning and [SEP] between sentences

3. Adds positional and segment ID (0 or 1) embeddings

4. Outputs a hidden state vector for each wordpiece (including [CLS] and [SEP]s)
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BERT encoder

Output H[CLS] Hmy Hdog His Hcute H[SEP] Hhe Hlikes Hplay Hing H[SEP]



BERT pretraining

Mask-LM: Randomly mask 15% of tokens and try to predict them from Htoken

NSP: Randomly sample correct/incorrect sentence pairs, try to predict which is correct 
from H[CLS]

A term used for this overall approach is denoising autoencoding

• “Denoising” because it tries to correct missing tokens

• “Autoencoding” because it tries to encode unlabeled text to a vector representation

Pretraining corpus:

• BooksCorpus (800M words)

• English Wikipedia (2,500M words)

BERTLARGE is also available (24 layers, 16 heads per layer, 340M params)
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Masked language modeling

10https://jalammar.github.io/illustrated-bert/



Next-sentence prediction
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Deep contextualized representations

A key thing about these models is that they produce deep contextualized 
representations of their input

• A single vector that represents the whole sequence (H[CLS]) or an individual token 
(Htoken)

• The vector reflects the context surrounding that token.

• So Hjerk will be different for “You are a jerk.” versus “I like jerk chicken”

• Compare and contrast to word vectors

With large scale pretraining, we have models which can produce useful representations of 
input, which we can then fine-tune to do specific things

• Kind of like teaching someone English before trying to teach them to grade papers
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RoBERTa

Essentially a refinement/exploration of BERT

• Same architecture & training data

• Also encoder-only

• Ditches NSP

• Does “dynamic” mask-LM

• Improved performance on NLP 
benchmarks

Comparable size to BERTLARGE

• 24 layers, 16 heads per layer, 355M params total

Probably a better default choice than BERT, if you have the GPU memory
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XLNet

Another competitor of BERT that occasionally 
shows up in the literature

Also uses only the encoder

Pretrains using a variant of autoregressive language modeling called permutation 
language modeling

Comparison with BERT

• Same size

• Additional training data:

• ClueWeb

• Common Crawl

• Broadly improved performance 14



Autoregressive language modeling

Basic idea: train the model to be most likely to reproduce the training data

We’ve learned this before (a couple times), but this is alternative terminology.

Based on a forward factorization of the text where each xt is dependent on {x0…xt-1}, so 
we can factorize the overall likeliness of x as a sum of log-probabilities of each individual 
xt: 

Several options for exactly how to do this:

• Teacher forcing: each x<t is drawn from the true data

• Naïve autoregression: each x<t is the one generated by the model
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Autoregressive language modeling
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Autoregressive decoding
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XLNET: Permutation language modeling
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Rather than only optimizing for token 
likelihood in forward factorization, XLNet 
optimizes for every possible permutation 
of the text

So not just P(X3 | X1, X2), but also P(X3), 
P(X3|X4), P(X3|X1, X4, X2), etc..

But doesn’t use decoder!

• Instead manipulates model attention 
and positional encodings to erase and 
reorder tokens from input



DistilBERT

A version of BERT that has been reduced in size from BERT by a process called knowledge 
distillation

Knowledge distillation:

• Big (trained) teacher model and small student 
model

• Train student model to emulate teacher model

• Different from regular training because teacher model produces nonzero probabilities 
over other possible classes, which is richer training data than 1’s and 0’s

• Kind of like explaining that a shape in a CT scan is a tumor, but also looks like a 
cyst, rather than “it’s just a tumor and not a cyst”

97% of the performance of BERT, but 40% smaller and 60% faster

• 6 layers, 12 heads per layer, 66M parameters
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T5

Important model. Really the first big 
improvement from the BERT variants.

Uses the full encoder-decoder apparatus of the Transformer architecture

Does a combination of unsupervised language modeling and supervised text-to-text 
modeling

Fine-tuned T5 is still pretty close to SoTA for many NLP tasks
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T5 pretraining—unsupervised

Creates a big, cleaned-up unsupervised training corpus:

“Colossal Clean Crawled Corpus”: cleaned-up version of Common Crawl

Uses variant of masked-LM objective from BERT, mapping corrupted text to true text

• Can mask out contiguous sequences of tokens at once

• Uses teacher-forcing to train decoder
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T5 pretraining—supervised

Also converts a diverse set of supervised learning datasets into text-to-text tasks, and 
trains on them 

• GLUE and SuperGLUE
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T5

Most common model is T5-11b (11 billion parameters), but smaller variants also exist

Fine-tuned T5-11b is still pretty competitive in NLP benchmarks

23https://super.gluebenchmark.com/leaderboard



GPT-1

Precursor model to GPT-2, GPT-3, and GPT-4

Decoder-only. Does not encode entire input sequence—rather, just encodes input 
sequence token-by-token

Trained using standard autoregressive language modeling objective

• Uses teacher forcing (I believe)

Trained on BooksCorpus dataset

12 layers, 12 heads per layer, 120M parameters
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GPT-1 fine-tuning
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GPT-2,3,4

All larger and more capable versions of GPT-1

Same model with slight modifications

Same or larger datasets

GPT-2: 1.5B parameters

GPT-3: 175B parameters

GPT-4: ???????????
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How to choose?

For general-purpose NLP fine-tuning, use the biggest model you can train:

• T5-11b → RoBERTa-Large → BERT-base → DistilBERT

For text generation, GPT-2 or GPT-Neo

For specific domains, try to find domain-specific versions of models

• E.g. MatSciBERT for materials-science specific NLP tasks

• Hugging Face has a nice search interface

Important to try multiple models
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Classification with BERT

I showed you last class how to build a classifier around a BERT model. 

Brief review: 

• BERT tokenizer will do tokenization, batching and padding for you. Noice.

• The output layer should be built on top of the BERT’s output for the [CLS] token, which 
gets added to the front of the sequence by the tokenizer
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BERT tokenizer
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BERT tokenizer
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BERT tokenizer
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SST 2 dataset
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SST-2 Dataset
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SST-2 DataLoader
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BERT classifier model
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BERT classifier model
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BERT classifier model
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BERT classifier training
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Other stuff we can do with BERT

Virtually the only thing BERT can’t do well is generate text autoregressively (decode it).

That means there’s a lot it can do, including:

• Sequence tagging

• Infilling missing tokens
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Transformer tokenizers

Sometimes we want to run a Transformer tokenizer over a list of tokens rather than a text
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Transformer tokenizer
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CoNLL 2003

Classic named-entity recognition (NER) dataset

Consists of consists of a series of news articles, with each word in each article tagged for 
part-of-speech, constituency, and named-entity membership

We’re only using the named-entity tags in this example
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Getting CoNLL
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Getting CoNLL
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Preprocessing CoNLL
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Preprocessing CoNLL2003
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CoNLL Dataset

The PyTorch Dataset for CoNLL is very simple and standard. Just return a set of token and 
a set of NER labels
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CoNLL DataLoader

The DataLoader is more 
complicated because we have to 
align the (double) tokenized 
tokens with the token tags.

We’ll use that extra tokenizer 
information I mentioned earlier 
to do that. 
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CoNLL sequence tagging model
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CoNLL sequence tagging model
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CoNLL sequence tagging model
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CoNLL sequence tagging model

52



CoNLL model training
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…



Masked language modeling

Even though BERT isn’t trained autoregressively, it is trained to in-fill missing words based 
on the surrounding context.

…and we can try that aspect of the model out!
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BERT masked language modeling
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BERT masked language modeling
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BERT masked language modeling
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BERT masked language modeling
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BERT masked language modeling
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BERT masked language modeling
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BERT masked language modeling
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BERT masked language modeling
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Concluding thoughts

Pretrained transformer models

• BERT, RoBERTa, XLNet, RoBERTa, DistilBERT, T5, GPT-X

Encoder-decoder, encoder-only, decoder-only

How to choose?

Looking forward:

• Zero- and few-shot learning

• Prompt engineering
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