
Sequence-to-Sequence Models and
Basic Attention
CS 780/880 Natural Language Processing Lecture 19

Samuel Carton, University of New Hampshire

Last lecture

RNNs for language modeling in PyTorch

Generating text

• Greedy decoding

• Random sampling

• Beam search decoding

Training RNNs

• Teacher forcing

• Exposure bias

• Alternatives

• Minimum risk, reinforcement learning, GANs

2

Sequence-to-sequence models

Basic idea: run an entire sequence through an RNN (the encoder), and then give the final
vector it makes (the context) to another RNN (the decoder) to generate a new text
sequence with

3
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

Sequence-to-sequence models

4

https://courses.engr.illinois.edu/cs447/fa2020/Slides/Lecture12.pdf

Machine translation

Sequence tagging will work

5

https://courses.engr.illinois.edu/cs447/fa2020/Slides/Lecture13.pdf

Machine translation

Sequence tagging won’t work!

6

https://courses.engr.illinois.edu/cs447/fa2020/Slides/Lecture13.pdf

Language modeling batch loss

When we do teacher forcing for language modeling, we judge the model’s output for each
input token, against the next consecutive output token.

But that won’t work directly for translation. So what do we do?

7

the movie was very good . <pad> <pad>

the movie was very good . <pad> <pad>

Sequence-to-sequence batch loss

Instead, we pass in all the English (or whichever) tokens, and then do teacher forcing loss
on the French (or whatever) tokens only.

So for:

The loss would look like:

8

mon nom est samuel <eos>

mon nom est samuel <eos>

my name is samuel <eos>

my name is samuel <eos>

to

mon nom est samuel <eos>

Preliminaries

Similar preliminaries:

1. Download translation dataset:

• https://download.pytorch.org/tutorial/data.zip

2. Load 2 vector models-one for English, one for French

• Add special tokens to both: <pad>, <unk>, <sos>, <eos>

3. Preprocess translation dataset and map to vector model tokens

4. Create dataset & dataloader

5. Install PyTorch Lightning

9

https://download.pytorch.org/tutorial/data.zip

Preprocessed dataset

10

LSTM seq-to-seq model: __init__()

11

LSTM seq-to-seq model: forward()

12

LSTM seq-to-seq model: generate()

13

Train model

14

Generate text

…and it didn’t really work. RIP.

15

Generate text

16

Improving naïve seq2seq

Big problem here: we’re expecting a lot out of that final encoder context vector.

• Essentially we’re asking it to save up everything it needs to know to then go ahead and
spit out the text we want.

• That’s a lot of info to squeeze into a 100-element vector

Idea: What if we also let the decoder look at the original input while it is decoding the
context?

• But it would need to be able to learn which parts of the original input were pertinent to
what it was trying to do at any given point

Solution: Attention

17

Classification with attention

Basic idea: Use one RNN (attender) to generate
attention weights over a sequence, then a second RNN
(predictor) to make predictions from the attention-
weighted sequence

Dual training objective which encourages attention
weights to be sparse, but predictor to be accurate.

In theory, leads to only important information (stuff
needed for prediction) to be attended to.

18

Attender

Predictor

You are a huge jerk

Prediction

You are a huge jerk

0 0 0 1 1

Attention classification model

19

Attention classification model

20

Trainer

21

Trainer

22

Visualizing model output

23

Visualizing model output

24

Saving and loading the model

25

Saving and loading the model

26

Concluding thoughts

Sequence-to-sequence models

• Main application: translation

Attention

• Improves performance of sequence-to-sequence models

• Improves interpretability of classifiers

Model saving/loading

27

	Slide 1: Sequence-to-Sequence Models and Basic Attention
	Slide 2: Last lecture
	Slide 3: Sequence-to-sequence models
	Slide 4: Sequence-to-sequence models
	Slide 5: Machine translation
	Slide 6: Machine translation
	Slide 7: Language modeling batch loss
	Slide 8: Sequence-to-sequence batch loss
	Slide 9: Preliminaries
	Slide 10: Preprocessed dataset
	Slide 11: LSTM seq-to-seq model: __init__()
	Slide 12: LSTM seq-to-seq model: forward()
	Slide 13: LSTM seq-to-seq model: generate()
	Slide 14: Train model
	Slide 15: Generate text
	Slide 16: Generate text
	Slide 17: Improving naïve seq2seq
	Slide 18: Classification with attention
	Slide 19: Attention classification model
	Slide 20: Attention classification model
	Slide 21: Trainer
	Slide 22: Trainer
	Slide 23: Visualizing model output
	Slide 24: Visualizing model output
	Slide 25: Saving and loading the model
	Slide 26: Saving and loading the model
	Slide 27: Concluding thoughts

