
RNN Language Modeling (revisited)
CS 780/880 Natural Language Processing Lecture 18

Samuel Carton, University of New Hampshire

Last lecture

2

RNNs for language modeling

Generating text

• Greedy decoding

• Random sampling

• Beam search decoding

Training RNNs

• Teacher forcing

• Exposure bias

• Alternatives

• Minimum risk, reinforcement learning, GANs

Last lecture

3

RNNs for language modeling

Generating text

• Greedy decoding

• Random sampling

• Beam search decoding

Training RNNs

• Teacher forcing

• Exposure bias

• Alternatives

• Minimum risk, reinforcement learning, GANs

Review: Language modeling

Basic idea: Given words {w0, w1, w2,…, wt-1}, we want to be able to reliably predict wt

If we can do this, we can:

• Generate new text

• Assess the overall likelihood of a piece of text

• (In 2023) talk to the model like it is a person and make it do stuff for us

• Prompt engineering

Lecture content borrowed from https://courses.engr.illinois.edu/cs447/fa2020/index.html

4

https://courses.engr.illinois.edu/cs447/fa2020/index.html

Word logits

5

Pretrained word

embeddings (frozen)

= input/output tensor

= model parameter

sparse unigram word vector0

dense word vector0

LSTM cell

hidden vector0

state vector0state vector-1

sparse unigram word logits0

hidden vector-1

Pretrained word

embeddings (frozen)

sparse unigram word vector1

dense word vector1

LSTM cell

hidden vector1

state vector1

sparse unigram word logits1

Output

layer
Output

layer

Batch training

6

the movie was very good . <pad> <pad>

i did not like the movie . <pad>

it was an okay movie for me .

LSTM language model

Batch training loss

Vector generation

7

the movie was

as good as a movie

as good as a movie

LSTM language model

Preliminaries

Usual preliminaries:

1. Load GloVE vectors using Gensim

• Add special tokens: <pad>, <unk>, <sos>, <eos>

2. Load & preprocess SST-2 dataset

• We’ll be ignoring the label for this exercise

• Includes:

• Lower-casing, tokenization

• Map to GloVE tokens

• Add <sos> and <eos> tokens

3. Create dataset & dataloader

4. Install PyTorch Lightning

8

Preprocessing

9

Dataloader

10

Language model class

11

Batch training

12

the movie was very good . <pad> <pad>

i did not like the movie . <pad>

it was an okay movie for me .

LSTM language model

Batch training loss

Batch training

13

the movie was very good . <pad> <pad>

LSTM language model

Batch training loss

Input IDs vs input tokens

I’m going to keep showing the actual tokens, but the reality is that the model is working
with vectors/matrices of input IDs, that we find by doing lookups on the vector_model.

14

the movie was very good . <pad> <pad>

3 14 7 58 138 6 400001 400001

=

Batch training (batch size = 1)

15

the movie was very good . <pad> <pad>

[0.1, 0.04, 0.3, …]
inputs_embeds

(1 x sequence length x

embedding size)

Embedding layer

input_ids

(1 x seq length)

LSTM

[0.03, 0.83, 0.09, …]hiddens

 (1 x sequence length

x hidden size)

Output layer

logits

 (1 x sequence length

x vocab size)

[10.92, 0.15, -0.45, …]

Batch loss

To compute the loss for the batch, we’ll compare the output logits to the input ID, shifted
backward by 1

• So the output logits for “the” should be close to the unigram vector for “movie”, etc.

And we’re still using cross-entropy loss (a.k.a negative log likelihood)

16

the movie was very good . <pad> <pad>

the movie was very good . <pad> <pad>

forward() method – training loss

17

Vector generation

18

the

LSTM language model

best

Vector generation

19

best

LSTM language model

thing

Vector generation

20

thing

LSTM language model

about

Vector generation

21

about

LSTM language model

the

Vector generation

22

LSTM language model

best thing about the movie was its flair

the

generate() method

23

sample_token_id_from_logits() method

24

evaluate() method

25

PyTorch hooks

26

Model training

27

Text generation

28

Text evaluation

29

TowardsDataScience Tutorial

Lots of ways to do language modeling in Python

e.g. https://towardsdatascience.com/language-modeling-with-lstms-in-pytorch-
381a26badcbf

30

https://towardsdatascience.com/language-modeling-with-lstms-in-pytorch-381a26badcbf
https://towardsdatascience.com/language-modeling-with-lstms-in-pytorch-381a26badcbf

Concluding thoughts

Language modeling kind of complicated in terms of coding

• Much less standardized than classification

Details matter

31

	Slide 1: RNN Language Modeling (revisited)
	Slide 2: Last lecture
	Slide 3: Last lecture
	Slide 4: Review: Language modeling
	Slide 5: Word logits
	Slide 6: Batch training
	Slide 7: Vector generation
	Slide 8: Preliminaries
	Slide 9: Preprocessing
	Slide 10: Dataloader
	Slide 11: Language model class
	Slide 12: Batch training
	Slide 13: Batch training
	Slide 14: Input IDs vs input tokens
	Slide 15: Batch training (batch size = 1)
	Slide 16: Batch loss
	Slide 17: forward() method – training loss
	Slide 18: Vector generation
	Slide 19: Vector generation
	Slide 20: Vector generation
	Slide 21: Vector generation
	Slide 22: Vector generation
	Slide 23: generate() method
	Slide 24: sample_token_id_from_logits() method
	Slide 25: evaluate() method
	Slide 26: PyTorch hooks
	Slide 27: Model training
	Slide 28: Text generation
	Slide 29: Text evaluation
	Slide 30: TowardsDataScience Tutorial
	Slide 31: Concluding thoughts

