

RNN Language Modeling (revisited)

CS 780/880 Natural Language Processing Lecture 18

Samuel Carton, University of New Hampshire

Last lecture

RNNs for language modeling

Generating text

- Greedy decoding
- Random sampling
- Beam search decoding

Training RNNs

- Teacher forcing
 - Exposure bias
- Alternatives
 - Minimum risk, reinforcement learning, GANs

Last lecture

RNNs for language modeling

Generating text

- Greedy decoding
- Random sampling
- Beam search decoding

Training RNNs

- Teacher forcing
 - Exposure bias
- Alternatives
 - Minimum risk, reinforcement learning, GANs

Review: Language modeling

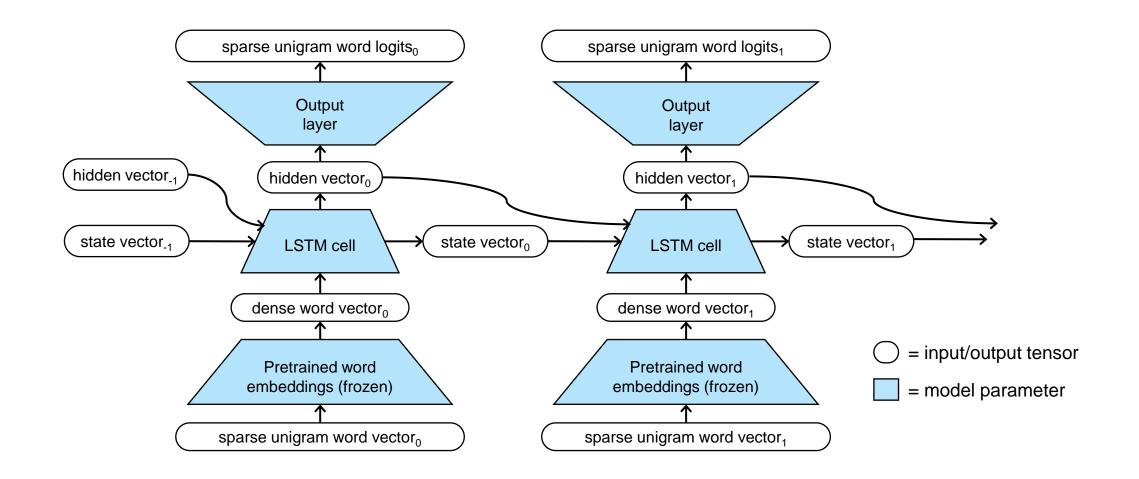
Basic idea: Given words {w⁰, w¹, w²,..., w^{t-1}}, we want to be able to reliably predict w^t

If we can do this, we can:

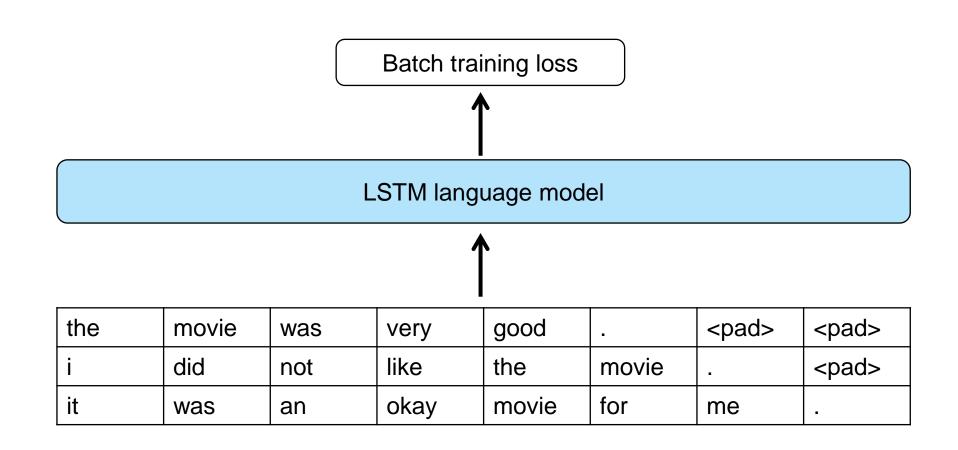
- Generate new text
- Assess the overall likelihood of a piece of text
- (In 2023) talk to the model like it is a person and make it do stuff for us
 - Prompt engineering

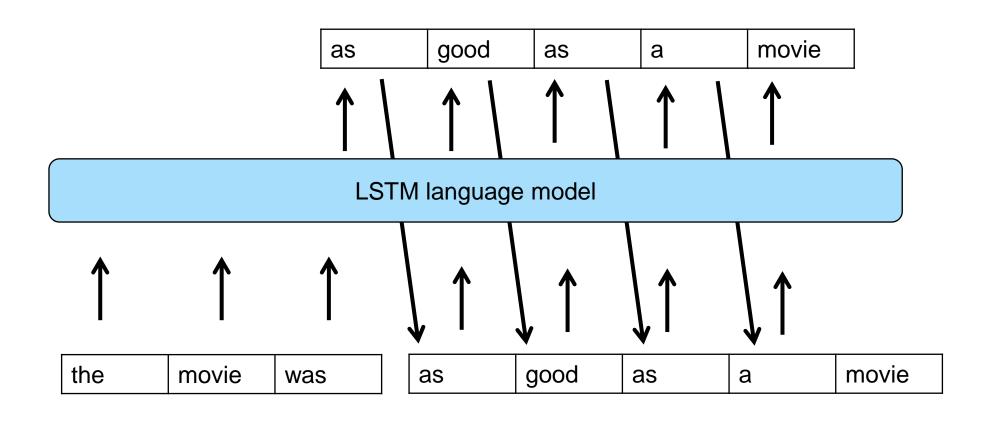
Lecture content borrowed from https://courses.engr.illinois.edu/cs447/fa2020/index.html

Word logits



Batch training





Preliminaries

Usual preliminaries:

- 1. Load GloVE vectors using Gensim
 - Add special tokens: <pad>, <unk>, <sos>, <eos>
- 2. Load & preprocess SST-2 dataset
 - We'll be ignoring the label for this exercise
 - Includes:
 - Lower-casing, tokenization
 - Map to GloVE tokens
 - Add <sos> and <eos> tokens
- 3. Create dataset & dataloader
- 4. Install PyTorch Lightning

Preprocessing

1 display(dev_df)

	sentence	label	tokens	input_ids
0	it 's a charming and often affecting journey .	1	[<sos>, it, 's, a, charming, and, often, affecting, journey, ., <eos>]</eos></sos>	[400002, 20, 9, 7, 12387, 5, 456, 7237, 3930, 2, 400003]
1	unflinchingly bleak and desperate	0	[<sos>, unflinchingly, bleak, and, desperate, <eos>]</eos></sos>	[400002, 101035, 12566, 5, 5317, 400003]
2	allows us to hope that nolan is poised to embark a major career as a commercial yet inventive fi	1	[<sos>, allows, us, to, hope, that, nolan, is, poised, to, embark, a, major, career, as, a, comm</sos>	[400002, 2415, 95, 4, 824, 12, 13528, 14, 7490, 4, 17406, 7, 224, 432, 19, 7, 1196, 553, 24065,
3	the acting , costumes , music , cinematography and sound are all astounding given the production	1	[<sos>, the, acting, ,, costumes, ,, music, ,, cinematography, and, sound, are, all, astounding,</sos>	[400002, 0, 2050, 1, 10349, 1, 403, 1, 22181, 5, 1507, 32, 64, 23248, 454, 0, 618, 9, 24932, 278
4	it 's slow very , very slow .	0	[<sos>, it, 's, slow,, very, ,, very, slow, ., <eos>]</eos></sos>	[400002, 20, 9, 2049, 65, 191, 1, 191, 2049, 2, 400003]
867	has all the depth of a wading pool .	0	[<sos>, has, all, the, depth, of, a, wading, pool, ., <eos>]</eos></sos>	[400002, 31, 64, 0, 4735, 3, 7, 27989, 3216, 2, 400003]
868	a movie with a real anarchic flair .	1	[<sos>, a, movie, with, a, real, anarchic, flair, ., <eos>]</eos></sos>	[400002, 7, 1005, 17, 7, 567, 41588, 17056, 2, 400003]
869	a subject like this should inspire reaction in its audience ; the pianist does not .	0	[<sos>, a, subject, like, this, should, inspire, reaction, in, its, audience, ;, the, pianist, d</sos>	[400002, 7, 1698, 117, 37, 189, 11356, 2614, 6, 47, 2052, 89, 0, 9399, 260, 36, 2, 400003]
870	is an arthritic attempt at directing by callie khouri .	0	[<sos>,, is, an, arthritic, attempt, at, directing, by, callie, khouri, ., <eos>]</eos></sos>	[400002, 434, 14, 29, 57228, 1266, 22, 8044, 21, 63691, 79156, 2, 400003]
871	looking aristocratic , luminous yet careworn in jane hamilton 's exemplary costumes , rampling g	1	[<sos>, looking, aristocratic, ,, luminous, yet, careworn, in, jane, hamilton, 's, exemplary, co</sos>	[400002, 862, 21897, 1, 29085, 553, 203745, 6, 4917, 3959, 9, 21144, 10349, 1, 92361, 1829, 7, 8

872 rows × 4 columns

Dataloader

```
1 torch.random.manual_seed(1234)
2 first_train_batch = next(iter(train_dataloader))
3 print('First training batch:')
4 print(first_train_batch)
5
6 print('First training batch sizes:')
7 print({key:value.shape for key, value in first_train_batch.items()})
```

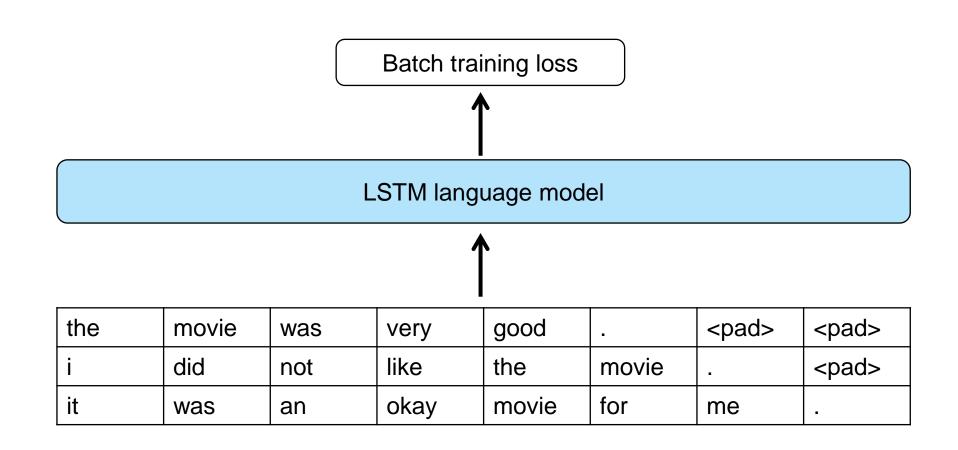
```
First training batch:
```

{'input_ids': tensor([[400002, 307, 66, 3, 11114, 2720, 5, 5097, 31351, 400003, 400001] [400002, 42131, 400003, 400001, 400001, 400001, 400001, 400001, 400001 400001, 400001] [400002, 29, 51710, 37369, 2692, 12, 1144, 1003, 64, 2516, 2, 400003, 400001, 400001, 400001, 400001, 400001, 317, 400001] [400002, 2322, 400003, 400001] [400002, 18519, 400003, 400001,

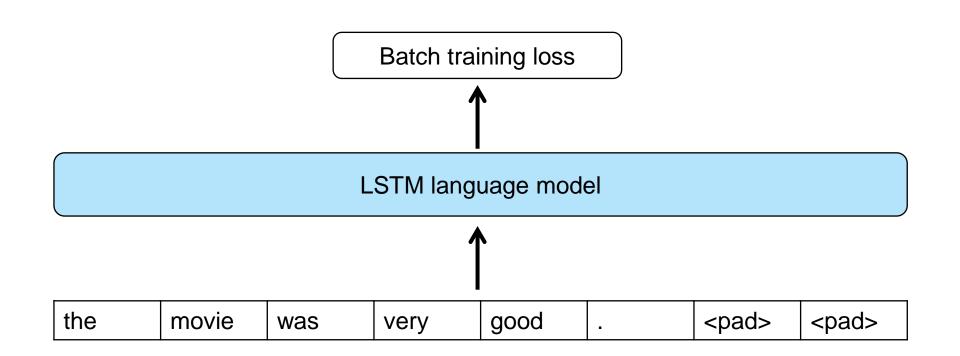
Language model class

class LSTMLanguageM	odel(pl.LightningModule):									
<pre>definit(self</pre>	,									
word	_vectors:np.ndarray,									
voca	p_size:int,									
lear	learning_rate:float,									
padd	padding_id:int,									
lstm	_hidden_size:int=100, # how big the inner vectors of the LSTM	will be,								
lstm	_layers:int =2, # how many layers the LSTM will have									
drop	put_prob:float=0.1,									
loss	_print_interval=100,									
**kw	args):									
<pre>super()init_</pre>	_(**kwargs)									
self.word_embed	dings = torch.nn.Embedding.from_pretrained(embeddings=torch.t	ensor(word_vectors),								
	freeze=True)									
<pre>self.lstm = tor</pre>	ch.nn.LSTM(input_size = word_vectors.shape[1],	l be taking in word vectors								
	hidden_size = lstm_hidden_size,									
	num_layers=lstm_layers,									
	bidirectional=False, # We can't count on being abl	e to proceed both backward and forward								
	dropout=dropout_prob,									
	<pre>batch_first=True # This is important. Set to False</pre>	by default for some reason.								
	has to produce one logit per potential word, so the output si	ze is vocab_size								
	er = torch.nn.Linear(lstm_hidden_size, vocab_size)									
self.lstm_layer										
	ate = learning_rate									
self.padding_id	<pre>= padding_id # we'll need this later</pre>									
self.train_loss										
<pre>self.val_loss =</pre>										
self.loss_print	_interval = loss_print_interval									

Batch training



Batch training

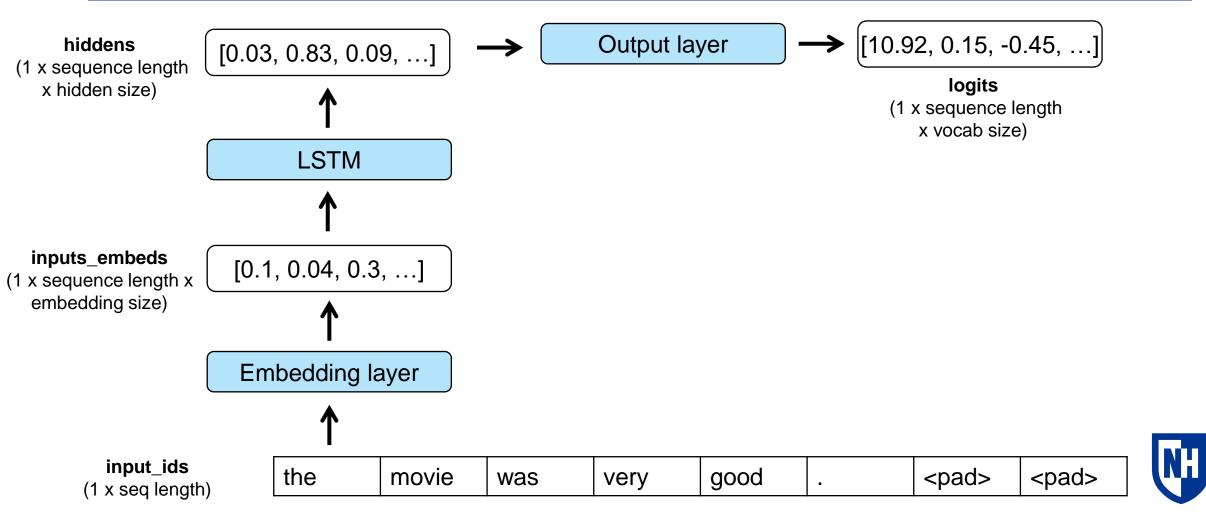


Input IDs vs input tokens

I'm going to keep showing the actual tokens, but the reality is that the model is working with vectors/matrices of input IDs, that we find by doing lookups on the vector_model.

the	movie	was	very	good	-	<pad></pad>	<pad></pad>
			=				
			_				
3	14	7	58	138	6	400001	400001

Batch training (batch size = 1)



Batch loss

To compute the loss for the batch, we'll compare the output logits to the input ID, shifted backward by 1

• So the output logits for "the" should be close to the unigram vector for "movie", etc.

And we're still using cross-entropy loss (a.k.a negative log likelihood)

the	movie	was	very	good		<pad></pad>	<pad></pad>	
	1	1	\uparrow \uparrow		1			
	the	movie	was	very	good		<pad></pad>	<pad></pad>

forward() method - training loss

def forward(self,

input_ids:torch.Tensor, #(batch size x max sequence length)
):
To do a training pass on the model, we're going to give it a batch as input, and
generate teacher-forcing loss based on that same batch
inputs_embeds = self.word_embeddings(input_ids) #(batch size x max sequence length x embedding size)
padding_mask = (input_ids != self.padding_id).int() #(batch size x max sequence length)
input_lengths = padding_mask.sum(dim=1).detach().cpu() #(batch size)
packed_embeddings = pack_padded_sequence(inputs_embeds, input_lengths, batch_first=True, enforce_sorted=False)
packed_output, (final_hidden, final_state) = self.lstm.forward(packed_embeddings)

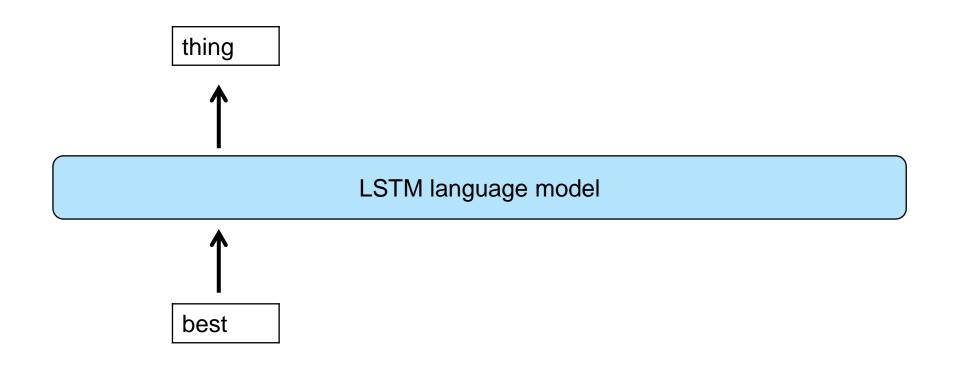
hiddens, _ = pad_packed_sequence(packed_output, batch_first=True, padding_value=0.0, total_length=input_ids.shape[1])

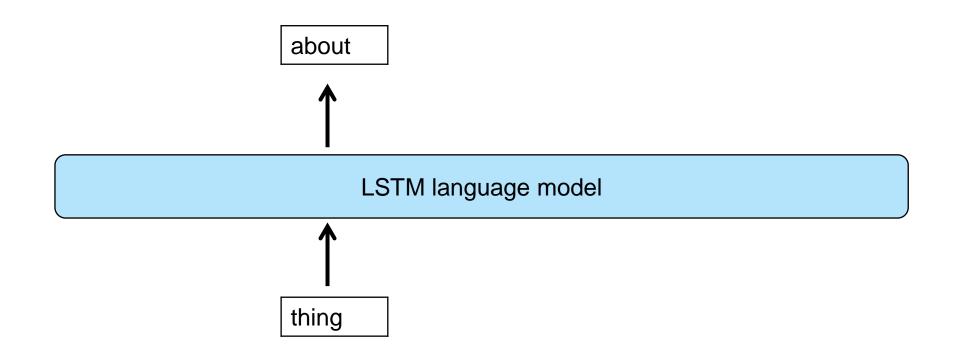
The output logits here represent one (un-normalized) probability value for every possible word the model # could generate, for each input word output logits = self.output layer(hiddens) #(batch size x max sequence length x vocab size)

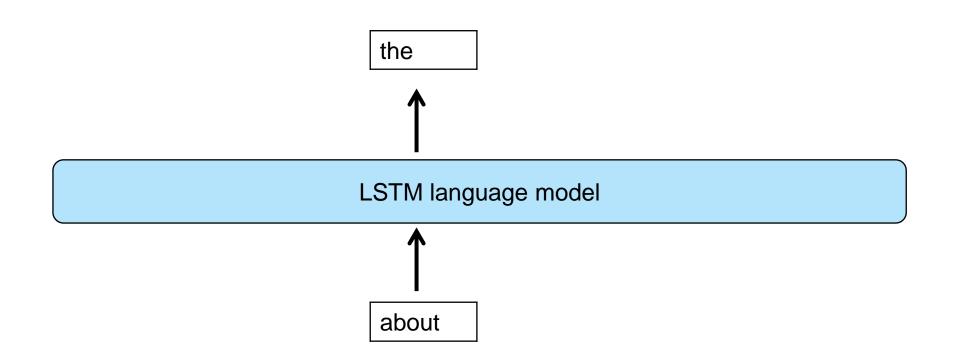
The target output for each input token t, is the true input token t+1
So we evaluate the output logits against the shifted-by-one version of the input tokens
And we don't impose a loss on the last input token
Pytorch cross entropy function still wants wants the vocab size to be the second dimension
losses = torch.nn.functional.cross entropy(output logits[:,:-1].transpose(1,2), input ids[:,1:], reduction='none')

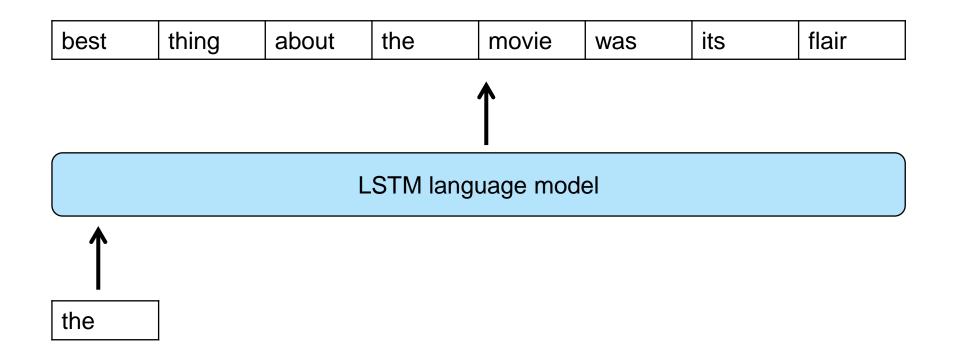
Then the final thing we need to do is zero out the losses whenever the target token is a padding token
padded_losses = losses * padding_mask[:,1:] # (batch size x max sequence length)
loss = padded losses.mean() #(1)

For the purpose of training, we're not going to bother sampling any actual text # We just generate the teacher-forcing loss return {'loss':loss}









generate() method

def generate(self,

):

input_ids:torch.Tensor, # Pain in the butt to do generation in batches, so assume this is 1-dimensional with #shape (1,sequence length) or (sequence length) output length:int, # How many tokens to generate past the input sequence

output_iength:int, # How many tokens to generate past the input sequence

temperature:float=0.5, # How loosely to sample from the output distribution

If the input shape is (1, sequence length), make it (sequence length) if input_ids.ndim == 2: input_ids = input_ids.squeeze(1)

Remove padding tokens if they are present padding_mask = (input_ids != self.padding_id).int() #(batch size x max sequence length) input_length = padding_mask.sum().detach().cpu() #(batch size) input_ids = input_ids[0:input_length] inputs_embeds = self.word_embeddings(input_ids) #(sequence length x embedding size)

First we run the given sequence through the LSTM

Because we aren't using a batch of variable-length sequences, we don't have to bother with a packed padded sequence like above input_hiddens, (final_input_hidden, final_input_state) = self.lstm.forward(inputs_embeds) # (sequence length x lstm hidden size), #((lstm layers x lstm hidden size), (lstm layers x lstm hidden size))

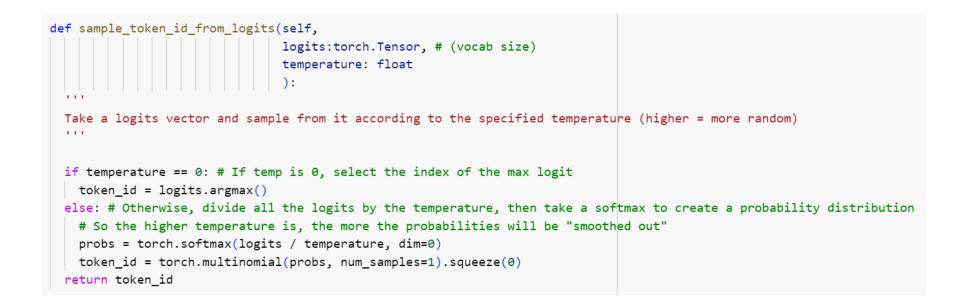
```
output_tokens = []
```

Then, for the rest of the desired output length, we generate one token at a time, conditioned on the previous generated token
last_hidden, last_state = final_input_hidden, final_input_state
last_logits = self.output_layer(last_hidden[-1])
last_token_id = self.sample_token_id_from_logits(last_logits, temperature)
output_tokens.append(last_token_id)
for i in range(input_length, output_length):
 last_embeds = self.word_embeddings(last_token_id).unsqueeze(0)
 last_output, (last_hidden, last_state) = self.lstm.forward(last_embeds, (last_hidden, final_input_state))
 last_logits = self.output_layer(last_hidden[-1])
 last_token_id = self.sample_token_id_from_logits(last_logits, temperature)
 output_tokens.append(last_token_id)
 # break

output_ids = torch.stack(output_tokens)

return {'output_ids':output_ids,}

sample_token_id_from_logits() method



evaluate() method

```
def evaluate(self, input ids:torch.Tensor):
 .....
 Evaluate the log-likelihood of a given sequence under the model
 ....
 # If the input shape is (1, sequence length), make it (sequence length)
 if input ids.ndim == 2: input ids = input ids.squeeze(1)
 # Remove padding tokens if they are present
 padding_mask = (input_ids != self.padding_id).int() #(batch size x max sequence length)
 input length = padding mask.sum().detach().cpu() #(batch size)
 input_ids = input_ids[0:input_length]
 inputs embeds = self.word embeddings(input ids) #(sequence length x embedding size)
 input_hiddens, (final_input_hidden, final_input_state) = self.lstm.forward(inputs_embeds)
 # (sequence length x lstm hidden size), ( (lstm layers x lstm hidden size), (lstm layers x lstm hidden size) )
 output logits = self.output layer(input hiddens)
 loss = torch.nn.functional.cross_entropy(output_logits[:-1], input_ids[1:])
 return {'negative log likelihood':loss}
```


PyTorch hooks

```
# And then everything else is the same!
def configure optimizers(self):
 return [torch.optim.Adam(self.parameters(), lr=self.learning rate)]
def training_step(self, batch, batch_idx):
 result = self.forward(**batch)
 loss = result['loss']
 self.log('train_loss', result['loss'])
 if batch idx % self.loss print interval ==0:
   print(f'Mean training loss (steps {batch idx-self.loss print interval}-{batch idx}): {self.train loss.compute():.3f}')
   self.train loss.reset()
  else:
    self.train_loss.update(loss.detach())
 # self.train accuracy.update(result['py'], batch['tag ids'])
  return loss
# def training_epoch_end(self, outs):
# print(f'Epoch {self.current epoch} training accuracy:', self.train accuracy.compute())
# self.train accuracy.reset()
def validation_step(self, batch, batch_idx):
 result = self.forward(**batch)
 self.log('val_loss', result['loss'])
 self.val loss.update(result['loss'])
 # self.val accuracy.update(result['py'], batch['tag ids'])
 return result['loss']
def validation_epoch_end(self, outs):
  print(f'Epoch {self.current_epoch} step {self.global_step} validation loss:', self.val_loss.compute())
 self.val loss.reset()
```


Model training

language_model = LSTMLan	<pre>guageModel(word_vectors=vector_model.vectors,</pre>
	<pre>vocab_size = vector_model.vectors.shape[0],</pre>
	learning_rate = 0.001,
	<pre>padding_id = vector_model.key_to_index['<pad>'],</pad></pre>
	lstm_hidden_size=100,
	lstm_layers=2,
	dropout_prob=0.1)

from pytorch_lightning import Trainer
from pytorch_lightning.callbacks.progress import TQDMProgressBar

```
trainer = Trainer(
    accelerator="auto",
    devices=1 if torch.cuda.is_available() else None,
    max_epochs=3,
    callbacks=[TQDMProgressBar(refresh_rate=20)],
    val_check_interval = 0.1,
    )
trainer.fit(model=language_model,
    trainer.fit(model=language_topic)
```

```
train_dataloaders=train_dataloader,
val_dataloaders=dev_dataloader)
```

Mean training loss (steps -100-0): nan Mean training loss (steps 0-100): 3.197 Mean training loss (steps 100-200): 2.581 Mean training loss (steps 200-300): 2.602 Epoch 0 step 336 validation loss: tensor(4.0279, device='cuda:0') Mean training loss (steps 300-400): 2.483 Mean training loss (steps 300-400): 2.502 Mean training loss (steps 500-600): 2.502 Mean training loss (steps 500-600): 2.456 Epoch 0 step 672 validation loss: tensor(3.9109, device='cuda:0') Mean training loss (steps 600-700): 2.375 Mean training loss (steps 700-800): 2.410 Mean training loss (steps 900-1000): 2.311 Epoch 0 step 1008 validation loss: tensor(3.8125, device='cuda:0')

Epoch 2 step 9088 validation loss: tensor(3.3974, device='cuda:0')
Mean training loss (steps 2300-2400): 1.776
Mean training loss (steps 2400-2500): 1.749
Mean training loss (steps 2500-2600): 1.786
Epoch 2 step 9424 validation loss: tensor(3.4150, device='cuda:0')
Mean training loss (steps 2600-2700): 1.738
Mean training loss (steps 2700-2800): 1.823
Mean training loss (steps 2800-2900): 1.715
Epoch 2 step 9760 validation loss: tensor(3.4289, device='cuda:0')
Mean training loss (steps 3000-3100): 1.747
Mean training loss (steps 3200-3300): 1.691
Epoch 2 step 10096 validation loss: tensor(3.4246, device='cuda:0')

Text generation

made to be a good time <eos> <eos>) and a overly measured . <eos> a lot of a serious , a lot of the

Text evaluation

```
with torch.no_grad():
 1
      movie_text = "<sos> This movie is really quite good! <eos>"
 2
      movie_sequence = text_to_id_vector(movie_text)
 3
      movie_likelihood = language_model.evaluate(movie_sequence)
4
      print(f'Log-likelihood of "{movie_text}":\n', movie_likelihood)
5
6
      nonmovie text = "<sos> I ate a sandwich for breakfast. <eos>"
7
      nonmovie_sequence = text_to_id_vector(nonmovie_text)
8
      nonmovie likelihood = language model.evaluate(nonmovie sequence)
9
      print(f'Log-likelihood of "{nonmovie text}":\n', nonmovie likelihood)
10
11
```

Log-likelihood of "<sos> This movie is really quite good! <eos>":
 {'negative_log_likelihood': tensor(11.2020)}
Log-likelihood of "<sos> I ate a sandwich for breakfast. <eos>":
 {'negative_log_likelihood': tensor(13.7354)}

TowardsDataScience Tutorial

Lots of ways to do language modeling in Python

e.g. <u>https://towardsdatascience.com/language-modeling-with-lstms-in-pytorch-381a26badcbf</u>

7	2	3	8	12	98	9	87	09	12	23	67	56	45	98	09	48	97	56	11	54	43	76	96
73	26	75	987	87	756	876	87	87	564	658	8	98	92	56	47	97	64	75	87	22	66	289	12
8	72	26	33	78	27	122	21	2	7	8	6	55	42	57	26	72	10	28	23	78	98	65	45
67	45	87	90	8	76	54	3	45	67	65	45	7	62	12	18	72	23	36	34	72	11	33	15

Concluding thoughts

Language modeling kind of complicated in terms of coding

• Much less standardized than classification

Details matter

