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RNNs for language modeling

Generating text

• Greedy decoding

• Random sampling

• Beam search decoding

Training RNNs

• Teacher forcing

• Exposure bias

• Alternatives

• Minimum risk, reinforcement learning, GANs 
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Review: Language modeling

Basic idea: Given words  {w0, w1, w2,…, wt-1}, we want to be able to reliably predict wt

If we can do this, we can:

• Generate new text

• Assess the overall likelihood of a piece of text

• (In 2023) talk to the model like it is a person and make it do stuff for us

• Prompt engineering

Lecture content borrowed from https://courses.engr.illinois.edu/cs447/fa2020/index.html  
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Word logits
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Batch training
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the movie was very good . <pad> <pad>

i did not like the movie . <pad>

it was an okay movie for me .

LSTM language model

Batch training loss



Vector generation
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the movie was

as good as a movie

as good as a movie

LSTM language model



Preliminaries

Usual preliminaries:

1. Load GloVE vectors using Gensim

• Add special tokens: <pad>, <unk>, <sos>, <eos>

2. Load & preprocess SST-2 dataset

• We’ll be ignoring the label for this exercise

• Includes:

• Lower-casing, tokenization

• Map to GloVE tokens

• Add <sos> and <eos> tokens

3. Create dataset & dataloader

4. Install PyTorch Lightning
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Preprocessing

9



Dataloader
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Language model class
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Batch training
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Batch training
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Input IDs vs input tokens

I’m going to keep showing the actual tokens, but the reality is that the model is working 
with vectors/matrices of input IDs, that we find by doing lookups on the vector_model. 
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the movie was very good . <pad> <pad>
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Batch training (batch size = 1)
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the movie was very good . <pad> <pad>

[0.1, 0.04, 0.3, …]
inputs_embeds

(1 x sequence length x 

embedding size)

Embedding layer

input_ids 

(1 x seq length)

LSTM

[0.03, 0.83, 0.09, …]hiddens

 (1 x sequence length 

x hidden size)

Output layer

logits

 (1 x sequence length 

x vocab size)

[10.92, 0.15, -0.45, …]



Batch loss

To compute the loss for the batch, we’ll compare the output logits to the input ID, shifted 
backward by 1

• So the output logits for “the” should be close to the unigram vector for “movie”, etc.

And we’re still using cross-entropy loss (a.k.a negative log likelihood)
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forward()  method – training loss
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Vector generation
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Vector generation
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best 
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Vector generation
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LSTM language model

about



Vector generation
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about 

LSTM language model

the



Vector generation
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LSTM language model

best thing about the movie was its flair

the 



generate() method
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sample_token_id_from_logits() method
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evaluate() method
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PyTorch hooks
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Model training
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Text generation
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Text evaluation
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TowardsDataScience Tutorial

Lots of ways to do language modeling in Python

e.g. https://towardsdatascience.com/language-modeling-with-lstms-in-pytorch-
381a26badcbf

30

https://towardsdatascience.com/language-modeling-with-lstms-in-pytorch-381a26badcbf
https://towardsdatascience.com/language-modeling-with-lstms-in-pytorch-381a26badcbf


Concluding thoughts

Language modeling kind of complicated in terms of coding

• Much less standardized than classification

Details matter
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