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Last lecture

RNNs

• One-to-one

• Many-to-one

• Many-to-many

LSTMS

Increasing RNN capacity

• Depth

• Bidirectionality

Dropout
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LSTMs: NLP Swiss army knife

LSTMs are exciting for us because they are the Swiss army knife of NLP models. 

• Sequence classification

• Sequence tagging

• Language modeling

• Text-to-text (e.g. translation)

3



LSTMs: NLP Swiss army knife

LSTMs are exciting for us because they are the Swiss army knife of NLP models. 

• Sequence classification

• Sequence tagging

• Language modeling

• Text-to-text (e.g. translation)

4



LSTMs: NLP Swiss army knife

LSTMs are exciting for us because they are the Swiss army knife of NLP models. 

• Sequence classification

• Sequence tagging

• Language modeling

• Text-to-text (e.g. translation)

5



LSTMs: NLP Swiss army knife

LSTMs are exciting for us because they are the Swiss army knife of NLP models. 

• Sequence classification

• Sequence tagging

• Language modeling

• Text-to-text (e.g. translation)

6

and



LSTMs: NLP Swiss army knife

LSTMs are exciting for us because they are the Swiss army knife of NLP models. 

• Sequence classification

• Sequence tagging

• Language modeling

• Text-to-text (e.g. translation)

7



LSTMs: NLP Swiss army knife

LSTMs are exciting for us because they are the Swiss army knife of NLP models. 

• Sequence classification

• Sequence tagging

• Language modeling

• Text-to-text (e.g. translation)

8



Sequence tagging

Basic idea: Given a corpus of text where each word has a label, learn to predict word 
labels for unseen texts

• Part-of-speech tagging

• Named entity recognition

• “In his speech to the UN today, George Bush addressed the rising problems of…”

• Explanations

• “You are a real piece of garbage human being.” → Predicted toxic

Evaluation: Use the same metrics as for classification (Acc/P/R/F1)

• Two choices for aggregation:

• Calculate score for each text and then take mean

• Concatenate all texts together and calculate over one long sequence

• F1 preferable for very unbalanced tasks
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Named-entity recognition (NER)

Goal: Identify the named entities (people, corporations, etc) 
in a piece of text.

Important for large-scale text analysis

• E.g. Extracting structured information from scientific 
literature

• E.g. Performing market research over social media

Usually treated as sequence tagging task, where each word is 
tagged as (1) part of an entity or (2) not part of an entity

F1 preferable as a metric because usually unbalanced
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Sequence tagging

Context sensitive.

• “You are a real jerk!”

• “I am really craving some Jamaican jerk chicken right now.”
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POS tagging with HMM

A popular application of HMMs in NLP is part-of-speech tagging

We imagine a generative story where parts-of-speech occur in a Markov chain, and then 
they emit words conditioned on their value.
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Loading GloVe vectors with Gensim
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Loading GloVe vectors with Gensim
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Twitter POS tagging dataset

Named Entity Recognition in Tweets: An Experimental Study (Ritter et al., 2011)

https://raw.githubusercontent.com/aritter/twitter_nlp/master/data/annotated/pos.txt
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Reading and preprocessing POS data
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Reading and preprocessing POS data

49 possible POS tags in this particular dataset
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Reading and preprocessing POS data
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Reading and preprocessing POS data
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Training a LSTM POS tagger—Dataset
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Training a LSTM POS tagger—
DataLoader
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Training a LSTM POS tagger—
DataLoader
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Training a LSTM POS tagger—Model
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Training a LSTM POS tagger—Model
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Training a LSTM POS tagger—Model
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Training a LSTM POS tagger—Trainer
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Concluding thoughts

Sequence tagging

• POS tagging

LSTMs as a NLP Swiss army knife

Domain-specific word embeddings

Masked loss
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