
Word Vectors
CS 780/880 Natural Language Processing Lecture 13

Samuel Carton, University of New Hampshire



Last lecture

Feedforward neural nets

Backpropagation

GPU operations on tensors

Training on GPU

Pytorch Lightning

• LightningModule

• Trainer
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Data sparsity

A big problem with everything we’ve done so far is that our data is sparse and the models 
always learn from scratch

• e.g. learning that “idiot” → toxicity doesn’t learn that “moron” → toxicity

• e.g. learning that “wonderful” → positive doesn’t learn that “great” → positive

This is limiting. It means that models can only learn from what’s in front of them and can’t 
leverage basic knowledge of the language. 

Also, big sparse count/TFIDF matrices are a pain to work with, computationally

How to fix?
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Sparse unigram matrices

Consider “He is an idiot” vs. “They are morons” 

• Pretty similar!

“He is an idiot”

“They are morons”

Cosine similarity will be rated as 0 because there’s no overlap in unigrams

Reminder:  
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he they is are an idiot moron …

1 0 1 0 1 1 0 0…

0 1 0 1 0 0 1 0…

Rest of the vocabulary



Distributional hypothesis

We know that “moron” and “idiot” are synonymous… but how does that synonymy 
manifest in a big corpus of text?

• Such as e.g. the entirety of Reddit

What can we notice here about the way

people use ‘idiot’ vs. ‘moron’?
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Distributional hypothesis

Basic idea: in a given corpus of text, similar words tend to occur in similar contexts

Examples:

“You are a gigantic [moron|idiot|dumb-dumb].”

“That was a really [moronic|idiotic|dumb] thing to do.”

“It was a [wonderful|great|stupendous] movie.”

“The casting was just [wonderful|great|stupendous].”

How to leverage?
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Co-occurrence vectors

Idea: what if instead of representing an individual word  as a column in a unigram vector, 
we instead represent it as the words it tends to co-occur with, in a big corpus?

“idiot”  

“moron”

Not perfect, but at least we can get a non-zero cosine distance now

But how to get a co-occurrence vector for a whole text?

• Just add up the ones for each word!

Are we done?
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he she is are an you a …

1 0 1 1 2 1 0 0…

0 1 0 1 0 1 2 0…

…he is an idiot…

…I am a moron…

…you are an idiot…

…you are a moron…

…

Corpus:



Achieving density

Not quite. Co-occurrence vectors are still 
going to be very sparse, and as wide as 
the vocabulary, so computationally a 
pain to work with.

Is there anything we can do here to 
somehow map words to a small, dense 
vector representation that includes that 
useful distributional information?
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Word vector models

Basic idea: generate a dense vector representation of a word that is predictive of the 
contexts it is likely to occur in. 

• Then, similar words will have similar vectors 

Basic workflow:

1. Train word vectors on big unlabeled corpus

2. Save as big mapping of word → vector

3. Use these pretrained vectors as starting point for specific tasks

• Classification

• Language modeling

• Translation

• etc.
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Word2Vec

Mikolov et al. (2013)

Basic idea: Train a feed-forward neural network to take unigram representation of word 
(i.e. the size of the vocabulary), squish it down to small dimension (e.g. 50), then predict 
unigram representation of co-occurring words
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Word2Vec

“You are a gigantic [moron|idiot|dumb-dumb].”
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Word2Vec

Basic algorithm:

1. Take unlabeled corpus, e.g. all of Wikipedia

2. Divide it into a series of (word, context) pairs

3. Choose an embedding size (50, 100, 200, 300, etc.)

4. Train a 2-layer feedforward model with two layers:

• Encoder: vocab size × embedding size

• Decoder: embedding size × vocab size

5. Use gradient descent to train model to encode words, then decode to predict context

• Use cross entropy for loss function

6. When you are done training:

• Encoder should map similar words to similar intermediate representations

• Run encoder over entire vocabulary to get a dense vector for each word, then 
save for later

• Throw away decoder 12



Word2Vec: two variants

There are actually two variants of Word2Vec:

• Continuous bag-of-words (CBOW): Takes in context, predicts word

• Faster to train, better for frequent words, I’m told

• Skip-gram: Takes in word, predicts context

• Better for rare words, apparently
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https://machinelearninginterview.com/topics/natural-language-processing/what-is-the-

difference-between-word2vec-and-glove

How to choose?



GloVe embeddings

For pretrained embedding vectors, use GloVe instead:

• Pennington et al. (2014), https://nlp.stanford.edu/projects/glove/

Trained by doing matrix factorization of giant N × N word-co-occurrence matrix

14https://machinelearninginterview.com/topics/natural-language-processing/what-is-the-

difference-between-word2vec-and-glove

https://nlp.stanford.edu/projects/glove/


Word vectors capture word similarity

In both GloVe and Word2Vec, similar words will end up with vectors that are close in 
vector space
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https://nlp.stanford.edu/projects/glove/



Word vectors capture analogy
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https://nlp.stanford.edu/projects/glove/

Gender Word senses



Reading GloVe embeddings
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Reading GloVe embeddings
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Properties of GloVe vectors
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Properties of GloVe vectors
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Properties of GloVe vectors
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Properties of GloVe vectors
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Reading and processing SST-2 dataset
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Adding vectors for unknown and 
padding tokens
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Adding vectors for unknown and 
padding tokens
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Dataset
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DataLoader
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DataLoader
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Model
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Model
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Model
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Model
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Trainer
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Trainer
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Concluding thoughts

Word vector models

• Word2Vec

• CBOW

• Skip-gram

• GloVe

Word vectors in classification

• Padding

• Collation

• Centroids
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