Word Vectors
CS 780/880 Natural Language Processing Lecture 13
Samuel Carton, University of New Hampshire

Last lecture

Feedforward neural nets

Backpropagation

GPU operations on tensors

Training on GPU

Pytorch Lightning

- LightningModule
- Trainer

Data sparsity

A big problem with everything we've done so far is that our data is sparse and the models always learn from scratch

- e.g. learning that "idiot" \rightarrow toxicity doesn't learn that "moron" \rightarrow toxicity
- e.g. learning that "wonderful" \rightarrow positive doesn't learn that "great" \rightarrow positive

This is limiting. It means that models can only learn from what's in front of them and can't leverage basic knowledge of the language.

Also, big sparse count/TFIDF matrices are a pain to work with, computationally

How to fix?

Sparse unigram matrices

Consider "He is an idiot" vs. "They are morons"

- Pretty similar!
"He is an idiot"
"They are morons"

he	they	is	are	an	idiot	moron	\ldots
1	0	1	0	1	1	0	$0 \ldots$
0	1	0	1	0	0	1	$0 \ldots$

Cosine similarity will be rated as 0 because there's no overlap in unigrams
Reminder: \quad cosine similarity $=S_{C}(A, B):=\cos (\theta)=\frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\|\|\mathbf{B}\|}=\frac{\sum_{i=1}^{n} A_{i} B_{i}}{\sqrt{\sum_{i=1}^{n} A_{i}^{2}} \sqrt{\sum_{i=1}^{n} B_{i}^{2}}}$,

Distributional hypothesis

We know that "moron" and "idiot" are synonymous... but how does that synonymy manifest in a big corpus of text?

- Such as e.g. the entirety of Reddit

What can we notice here about the way people use 'idiot' vs. 'moron'?

```
Advice How do I stop being a moron? self.ny
Submitted }16\mathrm{ hours ago by winnie_the_monokuma
Weird post I know, but I genuinely need some advice.
Recently I've not been able to focus on readings or speak coherently in class. It feels like whatever I say always
comes out like gibberish. The other day I said a sentence in class completely out of grammatical order and couldn't correct myself (English is my first and only language). I didn't use to be this way, but recently I just feel like a total moron no matter what I do.
Additionally I've been experiencing slapstick levels of clumsiness-- knocking over stuff, tripping on nothing,
forgetting to give someone back their stuff even when I write a million reminders, getting stuck in my winter coat (don't ask how, I don't know).
I've also been getting crazy migraines recently and can barely think clearly anymore. I don't do drugs, don't drink much, and get ok amounts of sleep all things considered.
So idk what this is really, but how do I stop being a moron and get back to how I used to be? (Or should I just go see a doctor lol?)
14 comments share save hide report crosspost
```

```
- Am I an idiot?
```

Am I an idiot? (self.InformationTechnolog
submitted 6 days ago by Smooth-Trouble-8538
\downarrow
Long story short i'm a veteran that went back to school. Im about to graduate with my BS in IT, and I truly don't think I remember anything Ive actually learned. I managed to get all A's and B's, but this was more important to me than actually learning the material. Im honestly scared, scared that I wont be ready for any jobs. I've been applying to IT internships but I fear I won't get past interviews.
What can I do to prepare for IT internship interviews, or just the job market in general?

Distributional hypothesis

Basic idea: in a given corpus of text, similar words tend to occur in similar contexts

Examples:
"You are a gigantic [moron|idiot|dumb-dumb]."
"That was a really [moronic|idiotic|dumb] thing to do."
"It was a [wonderful|great|stupendous] movie."
"The casting was just [wonderful|great|stupendous]."
How to leverage?

Co-occurrence vectors

Idea: what if instead of representing an individual word as a column in a unigram vector, we instead represent it as the words it tends to co-occur with, in a big corpus?

he	she	is	are	an	you	a	\ldots	
"idiot"	1	0	1	1	2	1	0	$0 \ldots$
"moron"	0	1	0	1	0	1	2	$0 \ldots$

Not perfect, but at least we can get a non-zero cosine distance now

But how to get a co-occurrence vector for a whole text?

Corpus:

\ldots he is an idiot...
\ldots I am a moron...
\ldots you are an idiot...
\ldots you are a moron...
\ldots

Are we done?

Achieving density

Not quite. Co-occurrence vectors are still going to be very sparse, and as wide as the vocabulary, so computationally a pain to work with.

Is there anything we can do here to somehow map words to a small, dense vector representation that includes that useful distributional information?

Word vector models

Basic idea: generate a dense vector representation of a word that is predictive of the contexts it is likely to occur in.

- Then, similar words will have similar vectors

Basic workflow:

1. Train word vectors on big unlabeled corpus
2. Save as big mapping of word \rightarrow vector
3. Use these pretrained vectors as starting point for specific tasks

- Classification
- Language modeling
- Translation
- etc.

Word2Vec

Mikolov et al. (2013)

```
arXiv
https://arxiv.org ) cs &
Efficient Estimation of Word Representations in Vector Space
by T Mikolov • 2013 • Cited by 40402 — Access Paper: Download a PDF of the paper titled
Efficient Estimation of Word Representations in Vector Space, by Tomas Mikolov and 3 other
```

Basic idea: Train a feed-forward neural network to take unigram representation of word (i.e. the size of the vocabulary), squish it down to small dimension (e.g. 50), then predict unigram representation of co-occurring words

Word2Vec
"You are a gigantic [moron|idiot|dumb-dumb]."

Word2Vec

Basic algorithm:

1. Take unlabeled corpus, e.g. all of Wikipedia
2. Divide it into a series of (word, context) pairs
3. Choose an embedding size (50, 100, 200, 300, etc.)
4. Train a 2-layer feedforward model with two layers:

- Encoder: vocab size \times embedding size
- Decoder: embedding size \times vocab size

5. Use gradient descent to train model to encode words, then decode to predict context

- Use cross entropy for loss function

6. When you are done training:

- Encoder should map similar words to similar intermediate representations
- Run encoder over entire vocabulary to get a dense vector for each word, then save for later
- Throw away decoder

Word2Vec: two variants

There are actually two variants of Word2Vec:

- Continuous bag-of-words (CBOW): Takes in context, predicts word
- Faster to train, better for frequent words, I'm told
- Skip-gram: Takes in word, predicts context
- Better for rare words, apparently

How to choose?
https://machinelearninginterview.com/topics/natural-language-processing/what-is-the-

GloVe embeddings

For pretrained embedding vectors, use GloVe instead:

- Pennington et al. (2014), https://nlp.stanford.edu/projects/glove/

Trained by doing matrix factorization of giant $\mathrm{N} \times \mathrm{N}$ word-co-occurrence matrix

Word vectors capture word similarity

In both GloVe and Word2Vec, similar words will end up with vectors that are close in vector space
O. frog

1. frogs
2. toad
3. litoria
4. leptodactylidae
5. rana
6. lizard
7. eleutherodactylus

8. litoria

9. leptodactylidae

10. rana

11. eleutherodactylus
https://nlp.stanford.edu/projects/glove/

Word vectors capture analogy

Gender

Word senses

Reading GloVe embeddings

```
1 1 ~ g l o v e \_ u r l ~ = ~ ' h t t p s : / / g i t h u b . c o m / u c l n l p / i n f e r b e d d i n g s / r a w / m a s t e r / d a t a / g l o v e / g l o v e . 6 B . 5 0 d . t x t . g z ' '
12
13 # glove_url = 'https://github.com/allenai/spv2/raw/master/model/glove.6B.100d.txt.gz'
14
15 # More available at http://nlp.uoregon.edu/download/embeddings/
10 import numpy as np
11 glove_data = np.loadtxt(glove_url, dtype='str', comments=None)
3 \text { print(glove_data)}
4
5 The vocab size for this particular embedding is 400,000
6 \text { print(glove_data.shape)}
[['the' '0.418' '0.24968' ... '-0.18411' '-0.11514' '-0.78581']
[',' '0.013441' '0.23682' ... '-0.56657' '0.044691' '0.30392']
['.' '0.15164' '0.30177' ... '-0.35652' '0.016413' '0.10216']
['rolonda' '-0.51181' '0.058706' ... '-0.25003' '-1.125' '1.5863']
['zsombor' '-0.75898' '-0.47426' ... '0.78954' '-0.014116' '0.6448']
['sandberger' '0.072617' '-0.51393' ... '-0.18907' '-0.59021' '0.55559']]
(400000, 51)
```


Reading GloVe embeddings

```
1 # Split the downloaded data into a vocab list and vector matrix
2 glove_words = glove_data[:,0]
3 glove_vectors = glove_data[:,1:].astype('float')
4
5 print('Vocabulary:')
6 \text { print(glove_words)}
7
8 print('Vectors:')
9 print(glove_vectors)
```


1 \# We will need a vocab index later
2 glove_vocab $=\{ \}$
3 for i, word in enumerate(glove_words):
$4 \mid$ glove_vocab[word] = i

Properties of GloVe vectors

1 \# Finding the word vectors for a bunch of words I want to look at
2 kingv = glove_vectors[glove_vocab['king']]
3 queenv = glove_vectors[glove_vocab['queen']]
4 personv = glove_vectors[glove_vocab['person']]
5 presidentv = glove_vectors[glove_vocab['president']]
6 monarchv = glove_vectors[glove_vocab['monarch']]
7 ceov = glove_vectors[glove_vocab['ceo']]
8
9 doctorv $=$ glove_vectors[glove_vocab['doctor']]
10 nursev = glove_vectors[glove_vocab['nurse']]
11
12
13 manv = glove_vectors[glove_vocab['man']]
14 womanv = glove_vectors[glove_vocab['woman']]
15
16 moronv = glove_vectors[glove_vocab['moron']]
17 idiotv = glove_vectors[glove_vocab['idiot']]
18 geniusv = glove_vectors[glove_vocab['genius']]
19 prodigyv = glove_vectors[glove_vocab['prodigy']]
4 from scipy.spatial.distance import cosine as cosdis

Properties of GloVe vectors

1 \# Words with similar meanings tend to have closer vectors than words with opposite meanings
2 print('Moron vs. idiot distance:', cosdis(moronv, idiotv))
3 print('Moron vs. genius distance:', cosdis(moronv, geniusv))
4 print('Genius vs. prodigy distance:', cosdis(geniusv, prodigyv))
5
6 \# And even opposite-meaning words tend to be closer than unrelated words
7 print('Moron vs. man distance:', cosdis(moronv, manv))
Moron vs. idiot distance: 0.5694909847846478
Moron vs. genius distance: 0.8327756328149172
Genius vs. prodigy distance: 0.6045973937007791
Moron vs. man distance: 0.9317691419289097

Properties of GloVe vectors

```
6 \text { print('King-queen vs. man-woman:', cosdis(kingv - queenv, manv - womanv))}
7
8 # Much more similar than gender-neutral "analogies" we could try to construct
9 print('\nKing-queen vs. man-person:', cosdis(kingv - queenv, manv - personv))
10
1 1 \text { print('King-president vs. man-woman:', cosdis(kingv - presidentv, manv - womanv))}
12
1 3 \text { print('King-monarch vs. man-woman:', cosdis(kingv - monarchv, manv - womanv))}
14
```

King-queen vs. man-woman: 0.40296734358842223
King-queen vs. man-person: 0.9490595508253746
King-president vs. man-woman: 0.9414983701409074
King-monarch vs. man-woman: 0.6771549397265793

Properties of GloVe vectors

4 \# It actually does pretty well on monarch, surprisingly.
5 print(f'Man vs. monarch:', cosdis(manv, monarchv))
6 print(f'Woman vs. monarch:', cosdis(womanv, monarchv))
7 \# President favors men a bit, though less than I expected
8 print(f'\nMan vs. president:', cosdis(manv, presidentv))
9 print(f'Woman vs. president:', cosdis(womanv, presidentv))
10 \# Doctor is pretty good!
11 print(f'\nMan vs. doctor:', cosdis(manv, doctorv))
12 print(f'Woman vs. doctor:', cosdis(womanv, doctorv))
13 \# Nurse is still pretty gendered though.
14 print(f'\nMan vs. nurse:', cosdis(manv, nursev))
15 print(f'Woman vs. nurse:', cosdis(womanv, nursev))
16 \# And CEO is too, though not as bad as nurse.
17 print(f'\nMan vs. CEO:', cosdis(manv, ceov))
18 print(f'Woman vs. CEO:', cosdis(womanv, ceov))
Man vs. monarch: 0.5922413733494826
Woman vs. monarch: 0.5941693025598238

Man vs. president: 0.5569893914832684
Woman vs. president: 0.6375253287060663

Man vs. doctor: 0.28804209610894094
Woman vs. doctor: 0.2747264697454299

Man vs. nurse: 0.428129645178737
Woman vs. nurse: 0.28449795808534417

Reading and processing SST-2 dataset

1 display(dev_df)
sentence label
preprocessed

sentence label			preprocessed
0	it 's a charming and often affecting journey .	1	it 's a charming and often affecting journey.
1	unflinchingly bleak and desperate	0	unflinchingly bleak and desperate
2	allows us to hope that nolan is poised to emba...	1	allows us to hope that nolan is poised to emba...
3	the acting, costumes, music , cinematography...	1	the acting, costumes, music, cinematography...
4	it 's slow -- very, very slow.	0	it 's slow -- very, very slow.
...	...	\ldots	
867	has all the depth of a wading pool.	0	has all the depth of a wading pool.
868	a movie with a real anarchic flair .	1	a movie with a real anarchic flair .
869	a subject like this should inspire reaction in...	0	a subject like this should inspire reaction in...
870	... is an arthritic attempt at directing by ca...	0	... is an arthritic attempt at directing by ca...
871	looking aristocratic, Iuminous yet careworn i...	1	looking aristocratic, luminous yet careworn i...

872 rows $\times 3$ columns

Adding vectors for unknown and padding tokens

9 glove_words = np.concatenate([glove_words, ['<unk>', '<pad>']])
10 glove_vocab['<unk>'] = len(glove_data)
11 glove_vocab['<pad>'] = len(glove_data) +1
12
13 unk_vector $=$ np. mean(glove_vectors, axis=0)
14 pad_vector $=n p$. zeros_like(unk_vector)
15 glove_vectors = np.concatenate([glove_vectors, [unk_vector, pad_vector]],axis=0)
16
17 print(glove_words)
18 print(glove_words.shape)
19 print(glove_vectors)
20 print(glove_vectors.shape)

[^0]
Adding vectors for unknown and padding tokens

```
2 def preprocessed_to_ids(preprocessed):
    ids = []
    for word in preprocessed.split(' '): # We can count on being able to do this because we did the preprocessing above already
        if word in glove_vocab:
            ids.append(glove_vocab[word])
        else:
            ids.append(glove_vocab['<unk>'])
    return ids
1 0
11 train_df['input_ids'] = train_df['preprocessed'].apply(preprocessed_to_ids)
12 dev_df['input_ids'] = dev_df['preprocessed'].apply(preprocessed_to_ids)
13 display(dev_df)
```

sentence label

Dataset

```
5 class SST2VectorDataset(Dataset):
    def __init__(self,
        labels=None,
                input_ids=None):
        self.y = torch.tensor(labels,dtype=torch.int64)
        self.input_ids = input_ids
    def __len__(self):
    return self.y.shape[0]
def _getitem_(self, idx):
    rdict = {
        'y': self.y[idx],
        'input_ids': torch.tensor(self.input_ids[idx], dtype=torch.int64) # We generally want word IDs to be Longs
    }
    return rdict
```

```
1 train_dataset = SST2VectorDataset(train_df['label'], train_df['input_ids'])
2 dev_dataset = SST2VectorDataset(dev_df['label'], dev_df['input_ids'])
3
4 \text { print(train_dataset[0])}
5 print(train_dataset[0]['input_ids'].shape)
\{'y': tensor(0), 'input_ids': tensor([5708, 50, 52776, 25, 0, 13054, 1503])\}
torch.Size([7])
```


DataLoader

```
15 def SST2_collate(batch:List[Dict[str, torch.Tensor]]):
    y_batch = torch.tensor([example['y'] for example in batch])
    id_vectors = [example['input_ids'] for example in batch]
    # We're gonna pad these guys with the handy-dandy torch.nn.utils.rnn.pad_sequence
    # function, which takes a list of vectors and pads them out to the length of the
    # longest sequence in the list
    id_vector_matrix = torch.nn.utils.rnn.pad_sequence(id_vectors, batch_first=True, padding_value=glove_vocab['<pad>'])
    return {
        'y':y_batch,
        'input_ids':id_vector_matrix
    }
```

4 batch_size $=10$
5 train_dataloader = DataLoader(train_dataset, batch_size=batch_size, collate_fn = SST2_collate, shuffle=True)
6 dev_dataloader = DataLoader(dev_dataset, batch_size=batch_size, collate_fn = SST2_collate, shuffle=False)

DataLoader

```
3 torch.random.manual_seed(1234)
4 first_train_batch = next(iter(train_dataloader))
5 print('First training batch:')
6 print(first_train_batch)
7
8 print('First training batch sizes:')
9 print({key:value.shape for key, value in first_train_batch.items()})
```


First training batch:

\{'y': tensor([0, 0, 0, 1, 1, 1, 1, 1, 0, 0]), 'input_ids': tensor([[307, 66, 3, 11114, 2720, 5, 5097, 31351, 400001,
400001, 400001, 400001, 400001, 400001, 400001, 400001],
[42131, 400001, 400001, 400001, 400001, 400001, 400001, 400001, 400001,
400001, 400001, 400001, 400001, 400001, 400001, 400001],
[29, 51710, 37369, 2692, 12, 1144, 1003, 64, 317,
2516, 2, 400001, 400001, 400001, 400001, 400001],
[2322, 400001, 400001, 400001, 400001, 400001, 400001, 400001, 400001,
400001, 400001, 400001, 400001, 400001, 400001, 400001],
[18519, 400001, 400001, 400001, 400001, 400001, 400001, 400001, 400001,
400001, 400001, 400001, 400001, 400001, 400001, 400001],
$\left.\begin{array}{rrrrrrr}32, & 3478, & 17, & 1, & 5, & 907, & 81,\end{array}\right] 757, \quad 59$,
403, 81, 107, 36, 33, 1435, 106],
[12, 21590, 244, 21609, 400001, 400001, 400001, 400001, 400001,
400001, 400001, 400001, 400001, 400001, 400001, 400001],
[$4,6636,1121,3954,17,13,15215, \quad 5,608$,
33619, 17, 9693, 3861, 400001, 400001, 400001],
[14, 70, 151, 7, 1005, 400001, 400001, 400001, 400001,
400001, 400001, 400001, 400001, 400001, 400001, 400001],
$\left.\begin{array}{rrrrrr}{[20,} & 965, & 1369, & 70, & 33, & 81, \\ 2016, & 88552, & 20, & 9, & 16031, & 400001,\end{array}\right)$
2816, 88552, 20, 9, 16031, 400001, 400001]])\}
First training batch sizes:
\{'y': torch.Size([10]), 'input_ids': torch.Size([10, 16])\}

```
class WordVectorLogisticRegression(pl.LightningModule):
def __init__(self,
word_vectors:np.ndarray,
num_classes:int,
learning_rate:float,
padding_id:int,
**kwargs):
super().__init ( **kwargs)
self.word_embeddings = torch.nn.Embedding.from_pretrained(embeddings=torch.tensor(word_vectors),
freeze=True) #Typically we don't train the embedding layer
self.output_layer = torch.nn.Linear(word_vectors.shape[1], num_classes)
self.learning_rate = learning_rate
self.padding_id = padding_id # we'll need this later
self.train_accuracy = Accuracy(task='binary')
self.val_accuracy = Accuracy(task='binary')
```

```
def forward(self, y:torch.Tensor, input_ids:torch.Tensor):
    inputs_embeds = self.word_embeddings(input_ids) # shape (batch size, sequence length, embedding dim)
    padding_mask = (input_ids != self.padding_id).int()
    masked_sums = (padding_mask.unsqueeze(-1) * inputs_embeds).sum(dim=1)
    masked_counts = padding_mask.sum(dim=1)
    embedding_centroids = masked_sums/masked_counts.unsqueeze(-1)
    py_logits = self.output_layer(embedding_centroids.float())
    py = torch.argmax(py_logits, dim=1)
    loss = torch.nn.functional.cross_entropy(py_logits, y, reduction='mean')
    return {'py':py,
    loss':loss}
```

```
def configure_optimizers(self):
    return [torch.optim.Adam(self.parameters(), lr=self.learning_rate)]
def training_step(self, batch, batch_idx):
    result = self.forward(**batch)
    loss = result['loss']
    self.log('train_loss', result['loss'])
    self.train_accuracy.update(result['py'], batch['y'])
    return loss
def training_epoch_end(self, outs):
    print('Training accuracy:', self.train_accuracy.compute())
def validation step(self, batch, batch idx):
    result = self.forward(**batch)
    self.val_accuracy.update(result['py'], batch['y'])
    return result['loss']
def validation epoch end(self, outs):
    print('Validation accuracy:', self.val_accuracy.compute())
```

```
3 model = WordVectorLogisticRegression(word_vectors=glove_vectors,
num_classes = 2,
learning_rate = 0.01,
padding_id = glove_vocab['<pad>'])
8 from pprint import pprint
9 with torch.no_grad():
    first_train_output = model(**first_train_batch)
1 1
12 print('First training output:')
1 3 \text { pprint(first_train_output)}
14
15 print('Output item shapes:')
16 pprint({key:value.shape for key, value in first_train_output.items()})
First training output:
{'loss': tensor(0.7152), 'py': tensor([1, 0, 1, 1, 0, 1, 1, 1, 1, 1])}
Output item shapes:
{'loss': torch.Size([]), 'py': torch.Size([10])}
```


Trainer

```
1 \text { from pytorch_lightning import Trainer}
from pytorch_lightning.callbacks.progress import TQDMProgressBar
3
trainer = Trainer(
    accelerator="auto",
        devices=1 if torch.cuda.is_available() else None,
        max epochs=3,
        callbacks=[TQDMProgressBar(refresh_rate=20)],
        val_check_interval = 0.5,
        )
```


Trainer

```
trainer.fit(model=model
    train_dataloaders=train_dataloader,
    val_dataloaders=dev_dataloader)
```

INFO:pytorch_lightning.utilities.rank_zero:GPU available: True (cuda), used: True INFO:pytorch_lightning.utilities.rank_zero:TPU available: False, using: 0 TPU cores INFO: pytorch lightning.utilities.rank zero:IPU available: False, using: 0 IPUs INFO:pytorch_lightning.utilities.rank_zero:HPU available: False, using: 0 HPUs INFO:pytorch_lightning.accelerators.cuda:LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0] INFO: pytorch_lightning.callbacks.model_summary:
| Name
Type
| Params

0	word_embeddings	Embedding	20.0 M
1	output_layer	Linear	102
2	train_accuracy	BinaryAccuracy	0
3	val_accuracy	BinaryAccuracy	0

102 Trainable params
20.0 M Non-trainable params
20.0 M Total params
80.001 Total estimated model params size (MB)

Validation accuracy: tensor(0.5000, device='cuda:0')
Epoch 2: 100\% \qquad
Validation accuracy: tensor(0.7197 , device='cuda: θ^{\prime}) Validation accuracy: tensor(0.7188 , device='cuda: θ^{\prime}) Training accuracy: tensor(0.7490 , device='cuda: θ^{\prime}) Validation accuracy: tensor(0.7109 , device='cuda: θ^{\prime}) Validation accuracy: tensor(0.7161 , device='cuda: 0^{\prime}) Training accuracy: tensor(0.7501, device='cuda:0') Validation accuracy: tensor(0.7142 , device='cuda: 0^{\prime}) Validation accuracy: tensor(0.7155, device='cuda:0') INFO: pytorch_lightning.utilities.rank_zero:` Trainer.fit' stopped: ‘max_epochs=3` reached. Training accuracy: tensor(0.7502 , device='cuda: θ^{\prime})

Concluding thoughts

Word vector models

- Word2Vec
- CBOW
- Skip-gram
- GloVe

Word vectors in classification

- Padding
- Collation
- Centroids

[^0]: (400002, 50)

