
Word Vectors
CS 780/880 Natural Language Processing Lecture 13

Samuel Carton, University of New Hampshire

Last lecture

Feedforward neural nets

Backpropagation

GPU operations on tensors

Training on GPU

Pytorch Lightning

• LightningModule

• Trainer

2

Data sparsity

A big problem with everything we’ve done so far is that our data is sparse and the models
always learn from scratch

• e.g. learning that “idiot” → toxicity doesn’t learn that “moron” → toxicity

• e.g. learning that “wonderful” → positive doesn’t learn that “great” → positive

This is limiting. It means that models can only learn from what’s in front of them and can’t
leverage basic knowledge of the language.

Also, big sparse count/TFIDF matrices are a pain to work with, computationally

How to fix?

3

Sparse unigram matrices

Consider “He is an idiot” vs. “They are morons”

• Pretty similar!

“He is an idiot”

“They are morons”

Cosine similarity will be rated as 0 because there’s no overlap in unigrams

Reminder:

4

he they is are an idiot moron …

1 0 1 0 1 1 0 0…

0 1 0 1 0 0 1 0…

Rest of the vocabulary

Distributional hypothesis

We know that “moron” and “idiot” are synonymous… but how does that synonymy
manifest in a big corpus of text?

• Such as e.g. the entirety of Reddit

What can we notice here about the way

people use ‘idiot’ vs. ‘moron’?

5

Distributional hypothesis

Basic idea: in a given corpus of text, similar words tend to occur in similar contexts

Examples:

“You are a gigantic [moron|idiot|dumb-dumb].”

“That was a really [moronic|idiotic|dumb] thing to do.”

“It was a [wonderful|great|stupendous] movie.”

“The casting was just [wonderful|great|stupendous].”

How to leverage?

6

Co-occurrence vectors

Idea: what if instead of representing an individual word as a column in a unigram vector,
we instead represent it as the words it tends to co-occur with, in a big corpus?

“idiot”

“moron”

Not perfect, but at least we can get a non-zero cosine distance now

But how to get a co-occurrence vector for a whole text?

• Just add up the ones for each word!

Are we done?
7

he she is are an you a …

1 0 1 1 2 1 0 0…

0 1 0 1 0 1 2 0…

…he is an idiot…

…I am a moron…

…you are an idiot…

…you are a moron…

…

Corpus:

Achieving density

Not quite. Co-occurrence vectors are still
going to be very sparse, and as wide as
the vocabulary, so computationally a
pain to work with.

Is there anything we can do here to
somehow map words to a small, dense
vector representation that includes that
useful distributional information?

8

Word vector models

Basic idea: generate a dense vector representation of a word that is predictive of the
contexts it is likely to occur in.

• Then, similar words will have similar vectors

Basic workflow:

1. Train word vectors on big unlabeled corpus

2. Save as big mapping of word → vector

3. Use these pretrained vectors as starting point for specific tasks

• Classification

• Language modeling

• Translation

• etc.

9

Word2Vec

Mikolov et al. (2013)

Basic idea: Train a feed-forward neural network to take unigram representation of word
(i.e. the size of the vocabulary), squish it down to small dimension (e.g. 50), then predict
unigram representation of co-occurring words

10

Word2Vec

“You are a gigantic [moron|idiot|dumb-dumb].”

11

Word2Vec

Basic algorithm:

1. Take unlabeled corpus, e.g. all of Wikipedia

2. Divide it into a series of (word, context) pairs

3. Choose an embedding size (50, 100, 200, 300, etc.)

4. Train a 2-layer feedforward model with two layers:

• Encoder: vocab size × embedding size

• Decoder: embedding size × vocab size

5. Use gradient descent to train model to encode words, then decode to predict context

• Use cross entropy for loss function

6. When you are done training:

• Encoder should map similar words to similar intermediate representations

• Run encoder over entire vocabulary to get a dense vector for each word, then
save for later

• Throw away decoder 12

Word2Vec: two variants

There are actually two variants of Word2Vec:

• Continuous bag-of-words (CBOW): Takes in context, predicts word

• Faster to train, better for frequent words, I’m told

• Skip-gram: Takes in word, predicts context

• Better for rare words, apparently

13
https://machinelearninginterview.com/topics/natural-language-processing/what-is-the-

difference-between-word2vec-and-glove

How to choose?

GloVe embeddings

For pretrained embedding vectors, use GloVe instead:

• Pennington et al. (2014), https://nlp.stanford.edu/projects/glove/

Trained by doing matrix factorization of giant N × N word-co-occurrence matrix

14https://machinelearninginterview.com/topics/natural-language-processing/what-is-the-

difference-between-word2vec-and-glove

https://nlp.stanford.edu/projects/glove/

Word vectors capture word similarity

In both GloVe and Word2Vec, similar words will end up with vectors that are close in
vector space

15

https://nlp.stanford.edu/projects/glove/

Word vectors capture analogy

16

https://nlp.stanford.edu/projects/glove/

Gender Word senses

Reading GloVe embeddings

17

Reading GloVe embeddings

18

Properties of GloVe vectors

19

Properties of GloVe vectors

20

Properties of GloVe vectors

21

Properties of GloVe vectors

22

Reading and processing SST-2 dataset

23

Adding vectors for unknown and
padding tokens

24

Adding vectors for unknown and
padding tokens

25

Dataset

26

DataLoader

27

DataLoader

28

Model

29

Model

30

Model

31

Model

32

Trainer

33

Trainer

34

Concluding thoughts

Word vector models

• Word2Vec

• CBOW

• Skip-gram

• GloVe

Word vectors in classification

• Padding

• Collation

• Centroids

35

	Slide 1: Word Vectors
	Slide 2: Last lecture
	Slide 3: Data sparsity
	Slide 4: Sparse unigram matrices
	Slide 5: Distributional hypothesis
	Slide 6: Distributional hypothesis
	Slide 7: Co-occurrence vectors
	Slide 8: Achieving density
	Slide 9: Word vector models
	Slide 10: Word2Vec
	Slide 11: Word2Vec
	Slide 12: Word2Vec
	Slide 13: Word2Vec: two variants
	Slide 14: GloVe embeddings
	Slide 15: Word vectors capture word similarity
	Slide 16: Word vectors capture analogy
	Slide 17: Reading GloVe embeddings
	Slide 18: Reading GloVe embeddings
	Slide 19: Properties of GloVe vectors
	Slide 20: Properties of GloVe vectors
	Slide 21: Properties of GloVe vectors
	Slide 22: Properties of GloVe vectors
	Slide 23: Reading and processing SST-2 dataset
	Slide 24: Adding vectors for unknown and padding tokens
	Slide 25: Adding vectors for unknown and padding tokens
	Slide 26: Dataset
	Slide 27: DataLoader
	Slide 28: DataLoader
	Slide 29: Model
	Slide 30: Model
	Slide 31: Model
	Slide 32: Model
	Slide 33: Trainer
	Slide 34: Trainer
	Slide 35: Concluding thoughts

