
Feedforward Neural Nets and PyTorch
Lightning
CS 780/880 Natural Language Processing Lecture 12

Samuel Carton, University of New Hampshire

Last lecture

PyTorch: Machine learning Legos

Mini-batch gradient descent

• Batch size very important

Training loop

• I screwed up!!

• Important to optimizer.zero_grad() on every training step

Avoid overfitting by:

• Regularization

• Early stopping

2

Training loop

3

Feedforward neural nets

We’ve been working with models that look like this:

4

Feedforward neural nets

But what about models that look like this:

5

Feedforward neural nets

Or like this:

6

Feedforward neural nets

Or…

7

Feed-forward neural nets

AKA “Multi-layer perception” (MLP)

Composed of multiple layers of parameters of size [input size x output size]

Original input tensor gets passed through layers one by one

Easy to express as a series of linear algebra matrix multiplications

8

Why use FFNs?

By mixing and mashing the input values together, feedforward neural nets can learn more
complicated functions for mapping the input 𝑋 to the output ො𝑦

• Example: XOR logical function

More generally, FFNs can model interactions between features

• E.g, “‘Jerk’ is usually predictive of toxicity, but not if the word
‘chicken’ is present.”

Neural nets being able to model nonlinear functions is why they
outperform other methods

• If you can get the training to work

More layers is the “deep” in “deep learning”

9

https://en.wikipedia.org/wiki/Feedforward_neural_network

Gradients for FFNs

It’s relatively straightforward to calculate loss-parameter gradients for linear functions,
because they decompose nicely into individual pieces that we can consider one at a time

10

ො𝑦 = 𝜎(𝑊0𝑋0 +𝑊1𝑋1 +𝑊2𝑋2 +⋯+𝑊𝑁𝑋𝑁 + 𝑏)

𝜕 ො𝑦

𝜕𝑊0
=

𝑑

𝜕𝑊0
 𝜎(𝑊0𝑋0)

Gradients for FFNs

But what about when everything now depends on everything?

11

ො𝑦 = 𝜎(𝑂0ℎ0
1 + 𝑂1ℎ1

1)

= 𝜎(𝑂0(𝑊00
1 ℎ0

0+𝑊10
1 ℎ1

0+𝑊20
1 ℎ2

0) + 𝑂1(𝑊01
1 ℎ0

0+𝑊11
1 ℎ1

0+𝑊21
1 ℎ2

0))

= 𝜎(𝑂0(𝑊00
1 (𝑊00

0 𝑥0 +𝑊10
0 𝑥1 +𝑊20

0 𝑥2 +⋯+𝑊𝑁0
0 𝑥𝑁) + ⋯) +⋯

𝜕ො𝑦

𝜕𝑊00
0 =? ? ?

Backpropagation

Algorithm for propagating gradients backward from the end of
a neural net to the beginning

Makes use of the chain rule:

12

𝜕 ො𝑦

𝜕𝑊00
0 =

𝜕 ො𝑦

𝜕𝑂0

𝜕𝑂0

𝜕𝑊00
0 +

𝜕 ො𝑦

𝜕𝑂0

𝜕𝑂0

𝜕𝑊00
0

=
𝜕 ො𝑦

𝜕𝑂0

𝜕𝑂0

𝜕𝑊00
1

𝜕𝑊00
1

𝜕𝑊00
0 +

𝜕𝑂0

𝜕𝑊10
1

𝜕𝑊10
1

𝜕𝑊00
0 +

𝜕𝑂0

𝜕𝑊20
1

𝜕𝑊20
1

𝜕𝑊00
0 +⋯

Backpropagation

Key things to remember:

• Feedforward neural nets become math spaghetti… but
they are still ultimately differentiable

• Backpropagation traces the spaghetti from the top to the
bottom to figure out

𝜕 ො𝑦

𝜕𝑤
 for any arbitrary parameter 𝑤

• Pytorch does all the heavy lifting for you when you call
loss.backward()

• BUT: the deeper down the parameter, the weaker the
gradients are

• So training tends to hit top-level layers harder than
bottom-level layers

13

Auto-differentiation in PyTorch

PyTorch implements backpropagation by:

• Tracking layer-to-layer gradients as operations are performed in the neural net

• Applying backpropagation algorithm to obtain layer-to-loss gradients when you call
loss.backward()

And these gradients get stored in GPU memory!!!!!!

• Major source of memory leaks in PyTorch

This is why it is important to:

• Wrap PyTorch operations in with torch.no_grad() when you aren’t going to do training

• Zero the existing gradients before each training step

14

GPU operations

15

GPU operations

16

GPU operations

17

Feedforward model

18

Feedforward model

19

Manual training loop with GPU

20

Manual training loop with GPU

21

Pytorch Lightning

My screwup with optimizer.zero_grad()—unintentional lesson on the dangers of writing
your own training loop

Pytorch Lightning: prefabricated training loops for PyTorch models

Requires slightly more complicated model code, but makes training loop one line

Two key elements:

• LightningModule – all models have to extend this

• Trainer – used to run the training loop

22

Pytorch Lightning

23

LightningModule

Subclass of torch.nn.Module

Includes:

• __init__(): defines structure

• forward(): passes input through model to make output

• Trainer hooks: get called by the Trainer object at different points in the training

• configure_optimizers(): initializes optimizer(s)

• training_step(): calculates training loss and returns it to Trainer

• train_epoch_end(): called at end of training epoch for e.g. calculating accuracy

• validation_step(): calculates validation loss and returns it to Trainer

• validation_epoch_end(): called at end of validation epoch

• …and tons more: https://pytorch-
lightning.readthedocs.io/en/stable/starter/introduction.html

24

https://pytorch-lightning.readthedocs.io/en/stable/starter/introduction.html
https://pytorch-lightning.readthedocs.io/en/stable/starter/introduction.html

LightningModule model

25

LightningModule model

26

Trainer

Pytorch Lightning Trainer is an object that takes in a LightningModule and a couple of
PyTorch DataLoaders (train and validation), and trains the LightningModule

Hugely powerful, tons of functionality:

• Early stopping

• Logging

• Different dev set evaluation intervals (every 0.25 epochs, every 500 steps, etc.)

• GPU vs CPU

• …and so on. You definitely want to check out the docs if you are going to use PL

https://pytorch-lightning.readthedocs.io/en/stable/common/trainer.html

27

https://pytorch-lightning.readthedocs.io/en/stable/common/trainer.html

Trainer

28

Trainer

29

Intermediate representations

Consider what properties h0 and h1 must have…

 VS.

30

Concluding thoughts

Feedforward neural nets

Backpropagation

GPU operations on tensors

Training on GPU

Pytorch Lightning

• LightningModule

• Trainer

31

	Slide 1: Feedforward Neural Nets and PyTorch Lightning
	Slide 2: Last lecture
	Slide 3: Training loop
	Slide 4: Feedforward neural nets
	Slide 5: Feedforward neural nets
	Slide 6: Feedforward neural nets
	Slide 7: Feedforward neural nets
	Slide 8: Feed-forward neural nets
	Slide 9: Why use FFNs?
	Slide 10: Gradients for FFNs
	Slide 11: Gradients for FFNs
	Slide 12: Backpropagation
	Slide 13: Backpropagation
	Slide 14: Auto-differentiation in PyTorch
	Slide 15: GPU operations
	Slide 16: GPU operations
	Slide 17: GPU operations
	Slide 18: Feedforward model
	Slide 19: Feedforward model
	Slide 20: Manual training loop with GPU
	Slide 21: Manual training loop with GPU
	Slide 22: Pytorch Lightning
	Slide 23: Pytorch Lightning
	Slide 24: LightningModule
	Slide 25: LightningModule model
	Slide 26: LightningModule model
	Slide 27: Trainer
	Slide 28: Trainer
	Slide 29: Trainer
	Slide 30: Intermediate representations
	Slide 31: Concluding thoughts

