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Last lecture

PyTorch: Machine learning Legos

Mini-batch gradient descent

• Batch size very important

Training loop

• I screwed up!!

• Important to optimizer.zero_grad() on every training step

Avoid overfitting by:

• Regularization

• Early stopping
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Training loop
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Feedforward neural nets

We’ve been working with models that look like this:
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Feedforward neural nets

But what about models that look like this:
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Feedforward neural nets

Or like this:
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Feedforward neural nets

Or…
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Feed-forward neural nets

AKA “Multi-layer perception” (MLP)

Composed of multiple layers of parameters of size [input size x output size]

Original input tensor gets passed through layers one by one

Easy to express as a series of linear algebra matrix multiplications
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Why use FFNs?

By mixing and mashing the input values together, feedforward neural nets can learn more 
complicated functions for mapping the input 𝑋 to the output ො𝑦

• Example: XOR logical function

More generally, FFNs can model interactions between features

• E.g, “‘Jerk’ is usually predictive of toxicity, but not if the word
‘chicken’ is present.”

Neural nets being able to model nonlinear functions is why they
outperform other methods

• If you can get the training to work

More layers is the “deep” in “deep learning”
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Gradients for FFNs

It’s relatively straightforward to calculate loss-parameter gradients for linear functions, 
because they decompose nicely into individual pieces that we can consider one at a time
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Gradients for FFNs

But what about when everything now depends on everything?
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Backpropagation

Algorithm for propagating gradients backward from the end of 
a neural net to the beginning

Makes use of the chain rule:
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Backpropagation

Key things to remember:

• Feedforward neural nets become math spaghetti… but 
they are still ultimately differentiable

• Backpropagation traces the spaghetti from the top to the 
bottom to figure out 

𝜕 ො𝑦

𝜕𝑤
 for any arbitrary parameter 𝑤

• Pytorch does all the heavy lifting for you when you call 
loss.backward()

• BUT: the deeper down the parameter, the weaker the 
gradients are

• So training tends to hit top-level layers harder than 
bottom-level layers
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Auto-differentiation in PyTorch

PyTorch implements backpropagation by:

• Tracking layer-to-layer gradients as operations are performed in the neural net

• Applying backpropagation algorithm to obtain layer-to-loss gradients when you call 
loss.backward()

And these gradients get stored in GPU memory!!!!!!

• Major source of memory leaks in PyTorch

This is why it is important to:

• Wrap PyTorch operations in with torch.no_grad() when you aren’t going to do training

• Zero the existing gradients before each training step

14



GPU operations
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GPU operations
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GPU operations
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Feedforward model
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Feedforward model
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Manual training loop with GPU
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Manual training loop with GPU
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Pytorch Lightning

My screwup with optimizer.zero_grad()—unintentional lesson on the dangers of writing 
your own training loop

Pytorch Lightning: prefabricated training loops for PyTorch models

Requires slightly more complicated model code, but makes training loop one line

Two key elements:

• LightningModule – all models have to extend this

• Trainer – used to run the training loop
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Pytorch Lightning
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LightningModule

Subclass of torch.nn.Module

Includes:

• __init__(): defines structure

• forward(): passes input through model to make output

• Trainer hooks: get called by the Trainer object at different points in the training

• configure_optimizers(): initializes optimizer(s)

• training_step(): calculates training loss and returns it to Trainer

• train_epoch_end(): called at end of training epoch for e.g. calculating accuracy

• validation_step(): calculates validation loss and returns it to Trainer

• validation_epoch_end(): called at end of validation epoch

• …and tons more: https://pytorch-
lightning.readthedocs.io/en/stable/starter/introduction.html

24

https://pytorch-lightning.readthedocs.io/en/stable/starter/introduction.html
https://pytorch-lightning.readthedocs.io/en/stable/starter/introduction.html


LightningModule model
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LightningModule model
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Trainer

Pytorch Lightning Trainer is an object that takes in a LightningModule and a couple of 
PyTorch DataLoaders (train and validation), and trains the LightningModule

Hugely powerful, tons of functionality:

• Early stopping

• Logging

• Different dev set evaluation intervals (every 0.25 epochs, every 500 steps, etc.)

• GPU vs CPU

• …and so on. You definitely want to check out the docs if you are going to use PL

https://pytorch-lightning.readthedocs.io/en/stable/common/trainer.html
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https://pytorch-lightning.readthedocs.io/en/stable/common/trainer.html


Trainer
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Trainer
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Intermediate representations

Consider what properties h0 and h1 must have…

           VS. 
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Concluding thoughts

Feedforward neural nets

Backpropagation

GPU operations on tensors

Training on GPU

Pytorch Lightning

• LightningModule

• Trainer
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