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Last lecture

Linear regression

• Learn 𝑊𝑥 + 𝑏 from data

• Predict continuous values

• Optimize mean squared error

Logistic regression

• Learn σ(𝑊𝑥 + 𝑏) from data

• Predict (close to) 0 or 1

• Optimize cross-entropy
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Key concepts:

• Loss function

• I.e. objective function

• Gradient of loss with respect to 
parameters

• Gradient descent

• Activation function



PyTorch

PyTorch is a deep learning library

• Define the structure of a neural net

• Use gradient descent to train it

• Implementations of common structural elements

PyTorch

• Created and maintained by Meta

• Competes primarily with TensorFlow (Google)

• Fairly dominant in research right now

All deep learning libraries are basically a lego kit for tensor operations
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Tensors

A tensor is an N-dimensional array of values

• e.g. a scalar (0D), vector (1D), or matrix (2D)

Any neural net is basically just a bunch of tensor 
operations

GPUs happen to be good at doing tensor operations 
quickly
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https://www.javatpoint.com/pytorch-tensors



Visualizing logistic regression
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Recall our visualization of logistic regression as a matrix (i.e tensor) operation



Tensors – Basic operations and dimensionality
Basic operations
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Dimensionality

PyTorch Tensors are 
functionally almost identical 
to Numpy arrays



Tensors – Convenient functionality
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Gradient Descent

Basic idea: Calculate the loss over the whole training 
set, do a step along the gradient, then recalculate the 
loss and so on

8

https://www.analyticsvidhya.com/blog/2022/07/gradient-descent-and-its-types/



Mini-batch gradient descent

For big datasets/models, we can’t fit all training 
gradients in memory.

So we do our steps on batches of the data, one 
at a time

When the batch size is 1, it’s called stochastic 
gradient descent

Batch size is a hugely important 

hyperparameter in neural net training. 

• Bigger usually better, but requires a bigger GPU

• Why Nvidia A100s are like $15k
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Reading and preprocessing SST-2 
dataset
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Reading and preprocessing SST-2 
dataset

11



PyTorch Datasets and DataLoaders

PyTorch modules prefer to work with PyTorch Datasets and DataLoaders

A Pytorch Dataset

• Will extend torch.utils.data.Dataset

• Will primarily know how to yield one (x,y) item, given an index

A PyTorch DataLoader

• Will extend torch.utils.data.DataLoader

• Will know how to iterate over batches of items

For more info: https://pytorch.org/tutorials/beginner/basics/data_tutorial.html 
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https://pytorch.org/tutorials/beginner/basics/data_tutorial.html


PyTorch Datasets
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PyTorch DataLoaders

14



PyTorch models

PyTorch models always extend torch.nn.Module

They always have:

• An __init__() method which defines the structure of the model

• A forward() method which takes in the input and spits out the model output

As long as the output of forward() is composed of differentiable tensor-on-tensor 
operations, then PyTorch can use automatic differentiation to figure out 
∆𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠𝑜𝑢𝑡𝑝𝑢𝑡, and then subsequently do gradient descent.
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A PyTorch model is essentially a wrapper around its forward() function, taking in an input 
tensor 𝒙 and producing a prediction ො𝑦 

PyTorch models
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Input data 𝑥

PyTorch 

module

𝑓(𝑥;𝑊)

Prediction ො𝑦 

True label 𝑦

Loss 𝐿(𝑦, ො𝑦)

Input data 𝒙

PyTorch 

module

𝑓(𝒙;𝑊)

Prediction ො𝑦 

Inference Training



Our model
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Visualizing logistic regression
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You can do the same thing for logistic regression by adding the σ function



Our model
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Our model
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Our model
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Our model
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Our model
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Our model
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PyTorch training loop

Basic pseudocode:

For each epoch:

For each training batch:

 Zero the accumulated grads

 Run model on training batch

 Calculate loss

 Perform gradient descent on step

(optional)

For each validation batch:

 Run model on validation batch

Report overall validation accuracy
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A PyTorch model is essentially a wrapper around its forward() function, taking in an input 
tensor x and producing a prediction y

PyTorch training loop
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Input data 𝑥

PyTorch 

module

𝑓(𝑥;𝑊)

Prediction ො𝑦 

True label 𝑦

Loss 𝐿
Optimizer

Gradient ∆𝑊𝐿

Training 

loop



Training loop

Preliminary stuff
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Training loop
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Training loop
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L1/L2 Regularization

Basic idea: discourage any one feature from having too much of an impact on the model 
output by punishing the sum (L1) or squared-sum (L2) of the model parameters

Standard way to discourage overfitting

Done automatically by 

most scikit-learn models
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Regularized model
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Regularized model
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Regularized Model

Regularization didn’t really help in this case. May be too simple model

We can observe we’re doing a lot of extra work though…
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Early stopping

Basic idea: Keep an eye on the development set performance (either loss or accuracy), 
and stop the training loop early when the improvement seems to level off

• Often save model checkpoints only on improvement, and then reload best checkpoint 
at the end of training

Another way to avoid 
overfitting
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https://neptune.ai/blog/early-stopping-with-neptune



Early stopping

…

…
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Concluding thoughts

PyTorch: Machine learning Legos

Mini-batch gradient descent

• Batch size very important

Training loop

Avoid overfitting by:

• Regularization

• Early stopping
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