
Neural Net Training with PyTorch
CS 780/880 Natural Language Processing Lecture 11

Samuel Carton, University of New Hampshire

Last lecture

Linear regression

• Learn 𝑊𝑥 + 𝑏 from data

• Predict continuous values

• Optimize mean squared error

Logistic regression

• Learn σ(𝑊𝑥 + 𝑏) from data

• Predict (close to) 0 or 1

• Optimize cross-entropy

2

Key concepts:

• Loss function

• I.e. objective function

• Gradient of loss with respect to
parameters

• Gradient descent

• Activation function

PyTorch

PyTorch is a deep learning library

• Define the structure of a neural net

• Use gradient descent to train it

• Implementations of common structural elements

PyTorch

• Created and maintained by Meta

• Competes primarily with TensorFlow (Google)

• Fairly dominant in research right now

All deep learning libraries are basically a lego kit for tensor operations

3

Tensors

A tensor is an N-dimensional array of values

• e.g. a scalar (0D), vector (1D), or matrix (2D)

Any neural net is basically just a bunch of tensor
operations

GPUs happen to be good at doing tensor operations
quickly

4

https://www.javatpoint.com/pytorch-tensors

Visualizing logistic regression

5

Recall our visualization of logistic regression as a matrix (i.e tensor) operation

Tensors – Basic operations and dimensionality
Basic operations

6

Dimensionality

PyTorch Tensors are
functionally almost identical
to Numpy arrays

Tensors – Convenient functionality

7

Gradient Descent

Basic idea: Calculate the loss over the whole training
set, do a step along the gradient, then recalculate the
loss and so on

8

https://www.analyticsvidhya.com/blog/2022/07/gradient-descent-and-its-types/

Mini-batch gradient descent

For big datasets/models, we can’t fit all training
gradients in memory.

So we do our steps on batches of the data, one
at a time

When the batch size is 1, it’s called stochastic
gradient descent

Batch size is a hugely important

hyperparameter in neural net training.

• Bigger usually better, but requires a bigger GPU

• Why Nvidia A100s are like $15k

9

Reading and preprocessing SST-2
dataset

10

Reading and preprocessing SST-2
dataset

11

PyTorch Datasets and DataLoaders

PyTorch modules prefer to work with PyTorch Datasets and DataLoaders

A Pytorch Dataset

• Will extend torch.utils.data.Dataset

• Will primarily know how to yield one (x,y) item, given an index

A PyTorch DataLoader

• Will extend torch.utils.data.DataLoader

• Will know how to iterate over batches of items

For more info: https://pytorch.org/tutorials/beginner/basics/data_tutorial.html

12

https://pytorch.org/tutorials/beginner/basics/data_tutorial.html

PyTorch Datasets

13

PyTorch DataLoaders

14

PyTorch models

PyTorch models always extend torch.nn.Module

They always have:

• An __init__() method which defines the structure of the model

• A forward() method which takes in the input and spits out the model output

As long as the output of forward() is composed of differentiable tensor-on-tensor
operations, then PyTorch can use automatic differentiation to figure out
∆𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠𝑜𝑢𝑡𝑝𝑢𝑡, and then subsequently do gradient descent.

15

A PyTorch model is essentially a wrapper around its forward() function, taking in an input
tensor 𝒙 and producing a prediction ො𝑦

PyTorch models

16
Input data 𝑥

PyTorch

module

𝑓(𝑥;𝑊)

Prediction ො𝑦

True label 𝑦

Loss 𝐿(𝑦, ො𝑦)

Input data 𝒙

PyTorch

module

𝑓(𝒙;𝑊)

Prediction ො𝑦

Inference Training

Our model

17

Visualizing logistic regression

18

You can do the same thing for logistic regression by adding the σ function

Our model

19

Our model

20

Our model

21

Our model

22

Our model

23

Our model

24

PyTorch training loop

Basic pseudocode:

For each epoch:

For each training batch:

 Zero the accumulated grads

 Run model on training batch

 Calculate loss

 Perform gradient descent on step

(optional)

For each validation batch:

 Run model on validation batch

Report overall validation accuracy

25

A PyTorch model is essentially a wrapper around its forward() function, taking in an input
tensor x and producing a prediction y

PyTorch training loop

26

Input data 𝑥

PyTorch

module

𝑓(𝑥;𝑊)

Prediction ො𝑦

True label 𝑦

Loss 𝐿
Optimizer

Gradient ∆𝑊𝐿

Training

loop

Training loop

Preliminary stuff

27

Training loop

28

Training loop

29

L1/L2 Regularization

Basic idea: discourage any one feature from having too much of an impact on the model
output by punishing the sum (L1) or squared-sum (L2) of the model parameters

Standard way to discourage overfitting

Done automatically by

most scikit-learn models

30

Regularized model

31

Regularized model

32

Regularized Model

Regularization didn’t really help in this case. May be too simple model

We can observe we’re doing a lot of extra work though…

33

Early stopping

Basic idea: Keep an eye on the development set performance (either loss or accuracy),
and stop the training loop early when the improvement seems to level off

• Often save model checkpoints only on improvement, and then reload best checkpoint
at the end of training

Another way to avoid
overfitting

34
https://neptune.ai/blog/early-stopping-with-neptune

Early stopping

…

…

35

Concluding thoughts

PyTorch: Machine learning Legos

Mini-batch gradient descent

• Batch size very important

Training loop

Avoid overfitting by:

• Regularization

• Early stopping

36

	Slide 1: Neural Net Training with PyTorch
	Slide 2: Last lecture
	Slide 3: PyTorch
	Slide 4: Tensors
	Slide 5: Visualizing logistic regression
	Slide 6: Tensors – Basic operations and dimensionality
	Slide 7: Tensors – Convenient functionality
	Slide 8: Gradient Descent
	Slide 9: Mini-batch gradient descent
	Slide 10: Reading and preprocessing SST-2 dataset
	Slide 11: Reading and preprocessing SST-2 dataset
	Slide 12: PyTorch Datasets and DataLoaders
	Slide 13: PyTorch Datasets
	Slide 14: PyTorch DataLoaders
	Slide 15: PyTorch models
	Slide 16: PyTorch models
	Slide 17: Our model
	Slide 18: Visualizing logistic regression
	Slide 19: Our model
	Slide 20: Our model
	Slide 21: Our model
	Slide 22: Our model
	Slide 23: Our model
	Slide 24: Our model
	Slide 25: PyTorch training loop
	Slide 26: PyTorch training loop
	Slide 27: Training loop
	Slide 28: Training loop
	Slide 29: Training loop
	Slide 30: L1/L2 Regularization
	Slide 31: Regularized model
	Slide 32: Regularized model
	Slide 33: Regularized Model
	Slide 34: Early stopping
	Slide 35: Early stopping
	Slide 36: Concluding thoughts

