Linear and Logistic Regression

CS 780/880 Natural Language Processing Lecture 10
Samuel Carton, University of New Hampshire

Last lecture

Key idea: Hidden Markov Models

Concepts:

- Bayes Networks
- Generative story
- HMMs
- Inference
- Likelihood: Forward algorithm
- Decoding: Viterbi algorithm
- Learning
- Labeled: Counting
- Unlabeled: Forward-backward algorithm
- Generation

Concepts:

- POS tagging
- Dynamic programming
- Expectation-maximization

Linear regression

Linear regression

Basic idea: given some points in N -dimensional space, find a "line of best fit" that is as close as possible to those points.

When the points are text:

- $\mathrm{N}=$ vocabulary size
- Examples:
- Grading essays 0-100
- Scoring text complexity

Linear regression

Mathematically, what we're trying to do is figure out some function:
$\hat{y}=W x+b$
... where W and b are values such that \hat{y} tends to be close to y for any given x.

Very common in ML to refer to predicted output as \hat{y} and true output as y.

Loss function

We generally articulate this goal with a loss function that describes the value we're trying to minimize with our choice of W and b.

AKA "Objective function"

It's very typical to minimize squared loss between expected and true output:

$$
\sum_{i}\left(\hat{y}_{i}-y_{i}\right)^{2}
$$

That would give us a loss function of:

$$
\begin{aligned}
L(W, b) & =\sum_{i}\left(\hat{y}_{i}-y_{i}\right)^{2} \\
& =\left(\hat{y}_{0}-y_{0}\right)^{2}+\left(\hat{y}_{1}-y_{1}\right)^{2}+\left(\hat{y}_{2}-y_{2}\right)^{2} \\
& =\left(W x_{0}+b-y_{0}\right)^{2}+\left(W x_{1}+b-y_{1}\right)^{2}+\left(W x_{2}+b-y_{2}\right)^{2}
\end{aligned}
$$

Simple example

To show how we can solve this, l'll use a simple example with no intercept (b)

So the loss function is:

$$
\begin{aligned}
L(W, b) & =\sum_{i}\left(\hat{y}_{i}-y_{i}\right)^{2} \\
& =\left(\hat{y}_{0}-y_{0}\right)^{2}+\left(\hat{y}_{1}-y_{1}\right)^{2}+\left(\hat{y}_{2}-y_{2}\right)^{2} \\
& =\left(W x_{0}-y_{0}\right)^{2}+\left(W x_{1}-y_{1}\right)^{2}+\left(W x_{2}-y_{2}\right)^{2} \\
& =\left(W^{2} x_{0}{ }^{2}-2 W x_{0} y_{0}+y_{0}^{2}\right) \\
& +\left(W^{2} x_{1}{ }^{2}-2 W x_{1} y_{1}+y_{1}^{2}\right) \\
& +\left(W^{2} x_{2}{ }^{2}-2 W x_{2} y_{2}+y_{2}^{2}\right) \\
& =W^{2}\left(x_{0}{ }^{2}+x_{1}{ }^{2}+x_{2}{ }^{2}\right)-2 W\left(x_{0} y_{0}+x_{1} y_{1}+x_{2} y_{2}\right)+\left(y_{0}{ }^{2}+y_{1}{ }^{2}+y_{2}^{2}\right)
\end{aligned}
$$

Simple example

If the loss function for W is this:

$$
\begin{aligned}
L(W)= & W^{2}\left(x_{0}^{2}+x_{1}^{2}+x_{2}^{2}\right) \\
& -2 W\left(x_{0} y_{0}+x_{1} y_{1}+x_{2} y_{2}\right) \\
& +\left(y_{0}^{2}+y_{1}^{2}+y_{2}^{2}\right)
\end{aligned}
$$

Then the graph of L as a function of W looks like this:

Simple example

It's pretty obvious what value of W will minimize the loss here.

Simple example

What may be less obvious is that this also happens to be the point where the derivative of L with respect to W is 0 .
$\frac{d L}{d W}=0$
In some sense it is the bottom of a pit.

Gradient descent is the process of gradually following the slope of the function down to these pit-bottoms

Simple example

In the most simple case, we pick a random point on the function and find the slope (derivative)

Then we move some incremental distance in the direction that reduces the value of L (left in this case)

This increment that we move each step is called the learning rate

Simple example

Then we calculate the slope again at this new point and move one increment in the reducing-L direction (still left).

Simple example

And we keep doing that...

Simple example

And keep doing that...

Ni

Simple example

Until we hit a point on W where the slope seems to have levelled out

That is, $\frac{d L}{d W}=0$
And we conclude that we've found the value of W that minimizes L

Challenge question:

- What if the learning rate is too high?
- What if it is too low?

Adding back the intercept

So what if our function does have an intercept?

$$
\begin{aligned}
L(W, b) & =\sum_{i}\left(\hat{y}_{i}-y_{i}\right)^{2} \\
& =\left(\hat{y}_{0}-y_{0}\right)^{2}+\left(\hat{y}_{1}-y_{1}\right)^{2}+\left(\hat{y}_{2}-y_{2}\right)^{2} \\
& =\left(W x_{0}+b-y_{0}\right)^{2}+\left(W x_{1}+b-y_{1}\right)^{2}+\left(W x_{2}+b-y_{2}\right)^{2} \\
& =\left(W^{2} x_{0}^{2}-2 W x_{0} y_{0}+2 W b x_{0}-b 2 y_{0}+y_{0}^{2}+b^{2}\right) \\
& +\left(W^{2} x_{1}^{2}-2 W x_{1} y_{1}+2 W b x_{1}-b 2 y_{1}+y_{1}^{2}+b^{2}\right) \\
& +\left(W^{2} x_{2}^{2}-2 W x_{2} y_{2}+2 W b x_{2}-b 2 y_{2}+y_{2}^{2}+b^{2}\right) \\
& =W^{2}\left(x_{0}^{2}+x_{1}^{2}+x_{2}^{2}\right) \\
& -2 W\left(x_{0} y_{0}+x_{1} y_{1}+x_{2} y_{2}\right) \\
& +2 W b\left(x_{0}+x_{1}+x_{2}\right) \\
& -2 b\left(y_{0}+y_{1}+y_{2}\right) \\
& +\left(y_{0}^{2}+y_{1}^{2}+y_{2}^{2}\right) \\
& +3 b^{2}
\end{aligned}
$$

Adding back the intercept

So what if our function does have an intercept?

$$
\begin{aligned}
L(W, b) & =W^{2}\left(x_{0}{ }^{2}+x_{1}^{2}+x_{2}^{2}\right) \\
& -2 W\left(x_{0} y_{0}+x_{1} y_{1}+x_{2} y_{2}\right) \\
& +2 W b\left(x_{0}+x_{1}+x_{2}\right) \\
& -2 b\left(y_{0}+y_{1}+y_{2}\right) \\
& +\left(y_{0}^{2}+y_{1}^{2}+y_{2}^{2}\right) \\
& +3 b^{2}
\end{aligned}
$$

More complicated, but the key thing is that L is still just a quadratic function of W and b

Adding back the intercept

So the loss becomes a 2-dimensional function, and we're trying to find a value for W and a value for b, which, taken together, minimize L

Adding back the intercept

We can still use gradient descent though!
Only now, instead of following the derivative $\frac{d L}{d W}$ of L with respect to W to the bottom...

We now follow a vector composed of the partial derivates of L with respect to W and b : $\left(\frac{\partial L}{\partial W}, \frac{\partial L}{\partial b}\right)$

We call this vector the gradient of L with respect to W and b , and usually denote it with the Δ symbol, e.g. $\Delta_{L}(\mathrm{~W}, \mathrm{~b})$

Gradient descent

Gradient descent is the method by which all neural nets are trained.

It works* in any situation where it is possible to calculate the gradient of the loss with respect to the model parameters

- $\hat{y}=W x+b$ has two parameters: W and b
- ChatGPT has 175 billion parameters
*: it works more or less well depending on the shape of the loss function.
- If the function is a nice convex "bucket", then it will always find the global minimum.
- But this is not usually true

Local minima

One issue in gradient descent is "local minima" which are false "dips" the gradient descent can get stuck in.

Saddle points

Another issue is "saddle points" which represent a minimum for one parameter but a maximum for a different one.

The gradient for both can be zero here... but it's not necessarily a very good solution.

Advanced gradient descent

Advanced gradient descent algorithms have various tricks to help them avoid local minima and other issues

Most popular: Adam

- Uses "momentum" to learn adaptive learning rate for each parameter

```
arXiv
https://arxiv.org , cs :
[1412.6980] Adam: A Method for Stochastic Optimization - arXiv
by DP Kingma - 2014 C Cited bi37055 Abstract: We introduce Adam, an algorithm for first-
order gradient-based optimization of stochastic objective functions, based on adaptive...
Cite as: arXiv:1412.6980
```

- Generally the default choice for optimizing any arbitrary neural net

Long story short: just use Adam for everything

- Unless you have a good reason not to

Logistic regression

Logistic regression

Generally in NLP we're more interested in classification than regression

- Mapping input x's to a discrete category rather than a continuous value

Linear regression not ideal for this

We can do it hackily with a threshold on the predicted value

- But this has problems

Logistic function

To solve this problem, we are going to wrap our original function, which we will call f, in a logistic function

$$
\sigma(x)=\frac{1}{1+e^{-x}} \quad \sigma(f(x))=\frac{1}{1+e^{-(W x+b)}}
$$

One nice thing about it is that it is easy to differentiate because of the property that:

$$
\frac{d}{d x} \sigma(x)=\sigma(x)(1-\sigma(x))
$$

https://en.wikipedia.org/wiki/Logistic_function

So if we call our original function f :
$\frac{d}{d x} \sigma(f(x))=\sigma(f(x))(1-\sigma(f(x))) f^{\prime}(x)=W \sigma(W x+b)(1-\sigma(W x+b))$

Logistic regression

So now instead of trying to fit a straight line to the data, we're trying to choose W and b to fit this S-shaped logistic curve to the data

Different choices for W and b change how steep the curve is and where it is centered.

Gradient descent for logistic regression

I won't do the full derivation, but:

- The function we're trying to fit is differentiable
- Which means we can create a differentiable loss function
- Which means we can do gradient descent!

However: mean squared error is not always convex for logistic regression
So we typically use cross-entropy loss as our objective: $\quad L(y, \hat{y})=\sum_{c} y_{c} \log \left(\hat{y}_{c}\right)$

- Sum across possible classes of true value for that class multiplied by predicted log-probability of that class

More detailed discussion available in Speech and Language Processing chapter
5: https://web.stanford.edu/~jurafsky/slp3/5.pdf

Visualizing linear regression

You can think of linear regression as a vector operation between matrices of x 's, W's and ys

Or in a graphical form which shows how the individual x 's come together to form \hat{y}

Visualizing logistic regression

You can do the same thing for logistic regression by adding the σ function

Visualizing logistic regression

When we think of the logistic function as a final step being placed on top of the weighted sum $W x+b$ in order to squeeze it down to $[0,1]$, then we call it an activation function

But logistic is the classic one

Linear vs logistic regression in practice

Read the SST-2 dataset

	sentence	label
0	it 's a charming and often affecting journey	1
1	unflinchingly bleak and desperate	0
2	allows us to hope that nolan is poised to emba...	1
3	the acting, costumes, music , cinematography...	1
4	it 's slow -- very, very slow.	0
...	\cdots	
867	has all the depth of a wading pool.	0
868	a movie with a real anarchic flair.	1
869	a subject like this should inspire reaction in...	0
870	... is an arthritic attempt at directing by ca...	0
871	looking aristocratic, , luminous yet careworn i...	1

[^0]
Preprocessing and vectorizing the data

Preprocessing and vectorizing the data

```
1 \text { from sklearn.feature_extraction.text import CountVectorizer}
1 vectorizer = CountVectorizer()
2 train_X = vectorizer.fit_transform(train_df['preprocessed'])
3 display(train_X)
<67349x10106 sparse matrix of type '<class 'numpy.int64'>'
    with 535539 stored elements in Compressed Sparse Row format>
1 dev_X = vectorizer.transform(dev_df['preprocessed'])
2 display(dev_X)
<872x10106 sparse matrix of type '<class 'numpy.int64'>'
    with }12939\mathrm{ stored elements in Compressed Sparse Row format>
```


Linear regression - Training

```
1 from sklearn.linear_model import LinearRegression
# # As with most cases, it's very easy to instantiate and train a linear regression model
# # in scikit-learn
3
4 # Note: SST-2 is NOT a regression task. It is a classification task.
5
6 # However, because the label is either 0 or 1, we can still sort of treat it as
# # a regression task, by treating those as target values for the model.
8
9 # This only works for ordinal classification tasks, where there's an easy
10 # way of converting from labels to numbers
1 1
12 lin_reg_model = LinearRegression()
13 lin_reg_model.fit(train_X, train_df['label'])
```

LinearRegression()

Linear regression - Training

```
1 # Notice that because it is a regression model, the predictions are continuous
# values that aren't necessarily bounded between 0 and 1
3 train_df['lin_reg_prediction'] = lin_reg_model.predict(train_X)
4 dev_df['lin_reg_prediction'] = lin_reg_model.predict(dev_X)
5
6 display(dev_df)
```

	sentence	label	preprocessed	lin_reg_prediction
0	it 's a charming and often affecting journey .	1	it 's a charm and often affect journey .	1.156662
1	unflinchingly bleak and desperate	0	unflinchingli bleak and desper	-0.069508
2	allows us to hope that nolan is poised to emba...	1	allow us to hope that nolan is pois to embark ...	0.919836
3	the acting, costumes, music , cinematography...	1	the act, costum , music, cinematographi and...	0.934645
4	it 's slow -- very, very slow.	0	it 's slow -- veri, veri slow.	0.031911
...	...	\cdots	\ldots	
867	has all the depth of a wading pool.	0	ha all the depth of a wade pool.	0.514821
868	a movie with a real anarchic flair.	1	a movi with a real anarch flair .	1.922209
869	a subject like this should inspire reaction in...	0	a subject like thi should inspir reaction in i...	0.914590
870	... is an arthritic attempt at directing by ca...	0	... is an arthrit attempt at direct by calli k...	0.326833
871	looking aristocratic, luminous yet careworn i...	1	look aristocrat , lumin yet careworn in jane h...	0.098285

37

Linear regression - Evaluation

```
1 # We can't use classification metrics when we do regression, because those only work
2 # for discrete categorical values
3
4 \text { \# Instead, we measure the average discrepancy between target value and true value}
# The two most common metrics are mean squared error (MSE) and mean absolute error (MAE)
6
7 from sklearn.metrics import mean_squared_error, mean_absolute_error
8
9 def evaluate_regression(y, py):
10 print(f'Mean squared error: {mean_squared_error(y,py):.3f}')
11 print(f'Mean absolute error: {mean_absolute_error(y,py):.3f}')
1 # Smaller values are better. Notice how overfitted we are to the training data
2
3 print('Train linear regression results:')
4 evaluate_regression(train_df['label'], train_df['lin_reg_prediction'])
5 print('\nDev linear regression results:')
6 evaluate_regression(dev_df['label'], dev_df['lin_reg_prediction'])
```

Train linear regression results:
Mean squared error: 0.078
Mean absolute error: 0.219
Dev linear regression results:
Mean squared error: 0.389
Mean absolute error: 0.472

Linear regression - Evaluation

1 from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score 2 import numpy as np
3
4 \# 0.5 is a reasonable value for the threshold in this circumstance
5 def evaluate_thresholded_regression(y, py, threshold=0.5):
6
\# Numpy vectors/pandas Series can be compared to scalars, producing a bool
\# vector, which the classification metric functions can handle
t $y=(y>=$ threshold $)$
t_py $=$ (py >= threshold)
print(f'Accuracy: \{accuracy_score(t_y, t_py):.3f\}')
print(f'Precision: \{precision_score(t_y, t_py):.3f\}')
print(f'Recall: \{recall_score(t_y, t_py):.3f\}')
5 print(f'F1: \{f1_score(t_y, t_py):.3f\}')

1 \# We were doing better with Naive Bayes a couple weeks ago.
2 print('Thresholded train linear regression results:')
3 evaluate_thresholded_regression(train_df['label'], train_df['lin_reg_prediction'])
4 print('\nThresholded dev linear regression results:')
5 evaluate_thresholded_regression(dev_df['label'], dev_df['lin_reg_prediction'])
Thresholded train linear regression results:
Accuracy: 0.927
Precision: 0.919
Recall: 0.953
F1: 0.936
Thresholded dev linear regression results:
Accuracy: 0.744
Precision: 0.735
Recall: 0.779
F1: 0.756

Linear regression - Global explanations

```
5 \text { def explain_binary_linear_model(model, vocabulary, k=10):}
# This is necessary because the coefs for logistic regression can be a 2D matrix
    # (though they won't be in this notebook)
    model_coefs = np.squeeze(model.coef_)
    sorted_coef_indices = np.argsort(np.abs(model_coefs))
    # Grab the indices of the top k indices and flip their order to descending
    top_k_indices = sorted_coef_indices[:-k:-1]
    # Numpy vectors can be indexed by multiple indices at once
    top_k_coefs = model_coefs[top_k_indices]
    # Python lists aren't so flexible, so we have to use a comprehension
    top_k_words = [vocabulary[index] for index in top_k_indices]
    for word, coef in zip(top_k_words, top_k_coefs):
    print(f'\tWord: {word} - Coef: {coef:.3f}')
1 \# These words make... a lot less sense than the ones we got back for Naive Bayes
2 \# Why might that be?
3 print(f'Top 10 coefficients in our linear regression model:')
4 explain_binary_linear_model(lin_reg_model, vocabulary)
```

Top 10 coefficients in our linear regression model:
Word: edmund - Coef: -2.093
Word: embed - Coef: 1.660
Word: schtick - Coef: 1.619
Word: interchang - Coef: 1.581
Word: drung - Coef: 1.561
Word: purgatori - Coef: -1.548
Word: size - Coef: -1.380
Word: wire - Coef: 1.357
Word: kangaroo - Coef: -1.353

"Kangaroo" and "Edmund"

"Kangaroo"

KANGAROO JACK

PG 2003, Comedy, 1h 29 m
S.3 8\%

TOMATOMETER
114 Reviews
目 29\%
AUDIENCE SCORE
50,000+ Ratings
"Edmund"
???

Linear regression - Local explanations

```
1 # We can also generate explanations for individual predictions using similar logic
2
3 def explain_binary_linear_model_prediction(input,model, vectorizor):
# This is necessary because the coefs for logistic regression can be a 2D matrix
# (though they won't be in this notebook)
model_coefs = np.squeeze(model.coef_)
# Assume the input hasn't been preprocessed, so do that and then vectorize it
preprocessed = preprocess(input)
tokens = preprocessed.split(' ')
input_X = vectorizer.transform([preprocessed])
py = model.predict(input_X)[0]
print(f'Prediction: {py}')
print(f'Word coefficients:')
for token in tokens:
    if token in vectorizer.vocabulary_: # Skip any tokens that are not in the vectorizer vocab
        token_index = vectorizer.vocabulary_[token]
        token_coef = model_coefs[token_index]
        print(f'\tword: {token} - Coef: {token_coef:.3f}')
    print(f'Model intercept: {model.intercept_}')
```


Linear regression - Local explanations

```
1 # We can see in this example that the prediction is just below 0.5
2 # "poorly" is considered much more negative than "well" was positive,
# but the high intercept almost pushes the total sum above 0.5
4
5 explain_binary_linear_model_prediction('the movie was well written but poorly acted.',
6 lin_reg_model,
7
lin_reg_model,
```

Prediction: 0.47644153366011277 Word coefficients:

Word: the - Coef: -0.005
Word: movi - Coef: 0.002
Word: wa - Coef: -0.079
Word: well - Coef: 0.161
Word: written - Coef: 0.087
Word: but - Coef: 0.047
Word: poorli - Coef: -0.337
Word: act - Coef: -0.001
Model intercept: 0.6021082139311205

Binary logistic regression - Training

1 from sklearn.linear_model import LogisticRegression

1 log_reg_model = LogisticRegression()
2 log_reg_model.fit(train_X, train_df['label'])
/usr/local/lib/python3.8/dist-packages/sklearn/linear_model/_logistic.py:814: Convergencelarning: lbfgs failed to converge (status=1): STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html\#logistic-regression
n_iter_i = _check_optimize_result
LogisticRegression()

Linear regression - Training

	```rain_df['log_reg_prediction'] = log_reg_mod ev_df['log_reg_prediction'] = log_reg_model isplay(dev_df)```	el.pr .pred	$\begin{aligned} & \text { dict(train_X) } \\ & \operatorname{ct}\left(\operatorname{dev}_{-} x\right) \end{aligned}$		
	sentence	label	preprocessed	lin_reg_prediction	log_reg_prediction
0	it 's a charming and often affecting journey	1	it 's a charm and often affect journey .	1.156662	1
1	unflinchingly bleak and desperate	0	unflinchingli bleak and desper	-0.069508	0
2	allows us to hope that nolan is poised to emba...	1	allow us to hope that nolan is pois to embark...	0.919836	1
3	the acting, costumes, music, cinematography ...	1	the act, costum, music, cinematographi and ...	0.934645	1
4	it 's slow -- very, very slow.	0	it 's slow -- veri, veri slow .	0.031911	0
...		$\ldots$	...	$\ldots$	..
867	has all the depth of a wading pool.	0	ha all the depth of a wade pool.	0.514821	0
868	a movie with a real anarchic flair	1	a movi with a real anarch flair .	1.922209	1
869	a subject like this should inspire reaction in...	0	a subject like thi should inspir reaction in i...	0.914590	0
870	... is an arthritic attempt at directing by ca...	0	... is an arthrit attempt at direct by calli k...	0.326833	0
871	looking aristocratic, luminous yet careworn i...	1	look aristocrat , lumin yet careworn in jane h...	0.098285	1

872 rows $\times 5$ columns

## Logistic regression - Evaluation

```
1 # Now we don't have to do any thresholding of our own, so we can
2 # just use the classification metrics as-is
3 def evaluate_classification(y, py):
 print(f'Accuracy: {accuracy_score(y, py):.3f}')
 print(f'Precision: {precision_score(y, py):.3f}')
 print(f'Recall: {recall_score(y, py):.3f}')
print(f'F1: {f1_score(y, py):.3f}')
```

1 \# Looking better! This is pretty similar to what we were getting with Naive Bayes
2 \# Still some overfitting happening though.
3 print('Train logistic regression results:')
4 evaluate_classification(train_df['label'], train_df['log_reg_prediction'])
5 print('\̄nDev logistic regression results:')
6 evaluate_classification(dev_df['label'], dev_df['log_reg_prediction'])

Train logistic regression results: Accuracy: 0.926
Precision: 0.927
Recall: 0.940
F1: 0.934
Dev logistic regression results: Accuracy: 0.808
Precision: 0.794
Recall: 0.842
F1: 0.817

Thresholded train linear regression results: Accuracy: 0.927
Precision: 0.919
Recall: 0.953
F1: 0.936

Thresholded dev linear regression results:
Accuracy: 0.744
Precision: 0.135
Recall: 0.779
F1: 0.756

46

## Logistic regression - global explanations

```
1 \# These look better
2 print(f'Top 10 coefficients in our logistic regression model:')
3 explain_binary_linear_model(log_reg_model, vocabulary)
```

Top 10 coefficients in our logistic regression model:
Word: lack - Coef: -4.389
Word: worst - Coef: -4.069
Word: anatom - Coef: 4.015
Word: devoid - Coef: -3.871
Word: failur - Coef: -3.703
Word: refresh - Coef: 3.654
Word: stupid - Coef: -3.521
Word: assum - Coef: -3.437
Word: mess - Coef: -3.407

## Logistic regression - Local explanations

```
1 # We can explain individual predictions the same way too
2
Interestingly, we see the same effect with "was" as we observed when we
did Naive Bayes
5 explain_binary_linear_model_prediction('the movie was well written but poorly acted.',
6 - - _ log_reg_model,
7 vectorizer)
Prediction: 0 Word coefficients:
Word: the - Coef: -0.023 Word: movi - Coef: -0.054 Word: wa - Coef: -0.903
Word: well - Coef: 1.488
Word: written - Coef: 0.483
Word: but - Coef: 0.077
Word: poorli - Coef: -2.898
Word: act - Coef: -0.061
Model intercept: [0.36910711]
```


## Concluding thoughts

## Linear regression

- Learn $W x+b$ from data
- Predict continuous values
- Optimize mean squared error


## Logistic regression

- Learn $\sigma(W x+b)$ from data
- Predict (close to) 0 or 1
- Optimize cross-entropy


## Key concepts:

- Loss function
- I.e. objective function
- Gradient of loss with respect to parameters
- Gradient descent
- Activation function


[^0]:    872 rows $\times 2$ columns

